Tuukka Petäjä, Ph.D.

Affiliations: 
Physics University of Helsinki, Helsingfors, Finland 
Area:
Atmospheric aerosol
Website:
https://tuhat.halvi.helsinki.fi/portal/en/persons/tuukka-petaja(a9f2bbd1-d3ec-4665-b455-b5d5665b123f).html
Google:
"Tuukka Petäjä"
Mean distance: 11375.1
 

Parents

Sign in to add mentor
Markku Kulmala grad student 2006 Univ. Helsinki
 (On Measurements of Formation, Growth, Hygroscopicity, and Volatility of Atmospheric Ultrafine Particles)
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Chen X, Ma W, Zheng F, et al. (2024) Identifying Driving Factors of Atmospheric NO with Machine Learning. Environmental Science & Technology
de Jonge RW, Xavier C, Olenius T, et al. (2024) Natural Marine Precursors Boost Continental New Particle Formation and Production of Cloud Condensation Nuclei. Environmental Science & Technology
Rörup B, He XC, Shen J, et al. (2024) Temperature, humidity, and ionisation effect of iodine oxoacid nucleation. Environmental Science: Atmospheres. 4: 531-546
Li J, Hua C, Ma L, et al. (2024) Key drivers of the oxidative potential of PM in Beijing in the context of air quality improvement from 2018 to 2022. Environment International. 187: 108724
Fung PL, Savadkoohi M, Zaidan MA, et al. (2024) Corrigendum to "Constructing transferable and interpretable machine learning models for black carbon concentrations" [Environ. Int. 184 (2024) 108449]. Environment International. 108561
Garcia-Marlès M, Lara R, Reche C, et al. (2024) Inter-annual trends of ultrafine particles in urban Europe. Environment International. 185: 108510
Marten R, Xiao M, Wang M, et al. (2024) Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer. Environmental Science: Atmospheres. 4: 265-274
Blichner SM, Yli-Juuti T, Mielonen T, et al. (2024) Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models. Nature Communications. 15: 969
Fung PL, Savadkoohi M, Zaidan MA, et al. (2024) Constructing transferable and interpretable machine learning models for black carbon concentrations. Environment International. 184: 108449
Li D, Huang W, Wang D, et al. (2024) Nitrate Radicals Suppress Biogenic New Particle Formation from Monoterpene Oxidation. Environmental Science & Technology
See more...