Dominik Heider
Affiliations: | Bioinformatics, Center of Medical Biotechnology | University of Duisburg-Essen, Germany |
Google:
"Dominik Heider"Bio:
Department of Bioinformatics, Center of Medical Biotechnology, University of Duisburg-Essen, Universitaetsstr. 2, 45117 Essen, Germany
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Sperlea T, Muth L, Martin R, et al. (2020) gammaBOriS: Identification and Taxonomic Classification of Origins of Replication in Gammaproteobacteria using Motif-based Machine Learning. Scientific Reports. 10: 6727 |
Löchel HF, Heider D. (2020) Comparative analyses of error handling strategies for next-generation sequencing in precision medicine. Scientific Reports. 10: 5750 |
Löchel HF, Eger D, Sperlea T, et al. (2020) Deep learning on chaos game representation for proteins. Bioinformatics. 36: 272-279 |
Spänig S, Heider D. (2019) Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. Biodata Mining. 12: 1-29 |
Löchel HF, Riemenschneider M, Frishman D, et al. (2018) SCOTCH: subtype A coreceptor tropism classification in HIV-1. Bioinformatics. 34: 2575-2580 |
Riemenschneider M, Herbst A, Rasch A, et al. (2017) eccCL: parallelized GPU implementation of Ensemble Classifier Chains. Bmc Bioinformatics. 18: 371 |
Riemenschneider M, Cashin KY, Budeus B, et al. (2016) Genotypic Prediction of Co-receptor Tropism of HIV-1 Subtypes A and C. Scientific Reports. 6: 24883 |
Sierra S, Dybowski JN, Pironti A, et al. (2015) Parameters Influencing Baseline HIV-1 Genotypic Tropism Testing Related to Clinical Outcome in Patients on Maraviroc. Plos One. 10: e0125502 |
Olejnik M, Steuwer M, Gorlatch S, et al. (2014) gCUP: rapid GPU-based HIV-1 co-receptor usage prediction for next-generation sequencing. Bioinformatics (Oxford, England). 30: 3272-3 |
Heider D, Dybowski JN, Wilms C, et al. (2014) A simple structure-based model for the prediction of HIV-1 co-receptor tropism. Biodata Mining. 7: 14 |