Thomas Hangelbroek, Ph.D.

Affiliations: 
2007 University of Wisconsin, Madison, Madison, WI 
Area:
Mathematics
Google:
"Thomas Hangelbroek"

Parents

Sign in to add mentor
Amos Ron grad student 2007 UW Madison
 (Approximation by scattered translates of the fundamental solution of the biharmonic equation on bounded domains.)
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Hangelbroek T, Narcowich FJ, Rieger C, et al. (2017) An inverse theorem for compact Lipschitz regions in ℝ^{} using localized kernel bases Ieee Communications Magazine. 87: 1949-1989
Hangelbroek T, Lauve A. (2014) The polyharmonic Dirichlet problem and path counting Journal Des Mathematiques Pures Et Appliquees. 102: 449-481
Fuselier E, Hangelbroek T, Narcowich FJ, et al. (2014) Kernel based quadrature on spheres and other homogeneous spaces Numerische Mathematik. 127: 57-92
Fuselier E, Hangelbroek T, Narcowich FJ, et al. (2013) Localized bases for kernel spaces on the unit sphere Siam Journal On Numerical Analysis. 51: 2538-2562
Hangelbroek T, Levesley J. (2013) On the density of polyharmonic splines Journal of Approximation Theory. 167: 94-108
Hangelbroek T. (2012) The penalized lebesgue constant for surface spline interpolation Proceedings of the American Mathematical Society. 140: 173-187
Hangelbroek T. (2012) On local RBF approximation Advances in Computational Mathematics. 37: 285-299
Hangelbroek T, Narcowich FJ, Ward JD. (2012) Polyharmonic and Related Kernels on Manifolds: Interpolation and Approximation Foundations of Computational Mathematics. 12: 625-670
Hangelbroek T, Madych W, Narcowich F, et al. (2012) Cardinal Interpolation with Gaussian Kernels Journal of Fourier Analysis and Applications. 18: 67-86
Hangelbroek T, Narcowich FJ, Sun X, et al. (2011) Kernel approximation on manifolds II: The L ∞ norm of the L 2 projector* Siam Journal On Mathematical Analysis. 43: 662-684
See more...