Elliott H. Lieb
Affiliations: | 1975- | Mathematics | Princeton University, Princeton, NJ |
Area:
Mathematical PhysicsWebsite:
https://web.math.princeton.edu/~lieb/Google:
"Elliott H. Lieb"Bio:
http://www.nasonline.org/member-directory/members/53258.html
https://history.aip.org/phn/11511008.html
https://www.aps.org/programs/honors/prizes/prizerecipient.cfm?last_nm=Lieb&first_nm=Elliott&year=1978
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=18857
Parents
Sign in to add mentorSamuel Frederick Edwards | grad student | 1956 | University of Birmingham (Physics Tree) | |
(Non-linear scalar meson field theory.) |
Children
Sign in to add traineeRafael D Benguria | grad student | Princeton (Physics Tree) | |
Lincoln Chayes | grad student | 1983 | Princeton |
Horng-Tzer Yau | grad student | 1987 | Princeton |
Pedro Goldbaum | grad student | 2005 | Princeton |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Lewin M, Lieb EH, Seiringer R. (2020) The local density approximation in density functional theory Arxiv: Mathematical Physics. 2: 35-73 |
Lewin M, Lieb EH, Seiringer R. (2019) Floating Wigner crystal with no boundary charge fluctuations Physical Review B. 100: 35127 |
Lieb EH, Rougerie N, Yngvason J. (2018) Rigidity of the Laughlin Liquid. Journal of Statistical Physics. 172: 544-554 |
Carlen EA, Frank RL, Lieb EH. (2018) Inequalities for quantum divergences and the Audenaert–Datta conjecture Journal of Physics A. 51: 483001 |
Lieb EH, Rougerie N, Yngvason J. (2018) Local incompressibility estimates for the Laughlin phase Communications in Mathematical Physics. 365: 431-470 |
Carlen EA, Lieb EH, Reuvers R. (2016) Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States Communications in Mathematical Physics. 344: 655-671 |
Lieb EH, Solovej JP. (2016) Proof of the Wehrl-type Entropy Conjecture for Symmetric SU(N) Coherent States Communications in Mathematical Physics. 1-12 |
Frank RL, Lieb EH. (2015) A compactness lemma and its application to the existence of minimizers for the liquid drop model Siam Journal On Mathematical Analysis. 47: 4436-4450 |
Lewin M, Lieb EH. (2015) Improved Lieb-Oxford exchange-correlation inequality with a gradient correction Physical Review a - Atomic, Molecular, and Optical Physics. 91 |
Giuliani A, Lieb EH. (2015) Columnar phase in quantum dimer models Journal of Physics a: Mathematical and Theoretical. 48 |