Luis E. Silvestre, Ph.D.

Affiliations: 
2005 University of Texas at Austin, Austin, Texas, U.S.A. 
Area:
Mathematics
Google:
"Luis Silvestre"

Parents

Sign in to add mentor
Luis A. Caffarelli grad student 2005 UT Austin
 (Regularity of the obstacle problem for a fractional power of the Laplace operator.)
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Chaker J, Silvestre L. (2020) Coercivity estimates for integro-differential operators Calculus of Variations and Partial Differential Equations. 59: 1-20
Imbert C, Silvestre L. (2019) The Weak Harnack Inequality For The Boltzmann Equation Without Cut-Off Journal of the European Mathematical Society. 22: 507-592
Serre D, Silvestre L. (2019) Multi-dimensional Burgers Equation with Unbounded Initial Data: Well-Posedness and Dispersive Estimates Archive For Rational Mechanics and Analysis. 234: 1391-1411
Imbert C, Jin T, Silvestre L. (2017) Hölder gradient estimates for a class of singular or degenerate parabolic equations Advances in Nonlinear Analysis. 8: 845-867
Jin T, Silvestre L. (2017) Hölder gradient estimates for parabolic homogeneous p-Laplacian equations Journal De MathéMatiques Pures Et AppliquéEs. 108: 63-87
Silvestre L. (2017) Upper bounds for parabolic equations and the Landau equation Journal of Differential Equations. 262: 3034-3055
Cameron S, Silvestre L, Snelson S. (2017) Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials Annales De L Institut Henri Poincare-Analyse Non Lineaire. 35: 625-642
Silvestre L, Snelson S. (2016) An integro-differential equation without continuous solutions Mathematical Research Letters. 23: 1157-1166
Caffarelli L, Silvestre L. (2016) A non local Monge-Ampere equation Communications in Analysis and Geometry. 24: 307-335
Imbert C, Silvestre L. (2016) Estimates on elliptic equations that hold only where the gradient is large Journal of the European Mathematical Society. 18: 1321-1338
See more...