Léonie Canet
Affiliations: | Physics | Université Grenoble-Alpes |
Google:
"Léonie Canet"Mean distance: (not calculated yet)
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Gosteva L, Tarpin M, Wschebor N, et al. (2024) Inviscid fixed point of the multidimensional Burgers-Kardar-Parisi-Zhang equation. Physical Review. E. 110: 054118 |
Vercesi F, Poirier S, Minguzzi A, et al. (2024) Scaling regimes of the one-dimensional phase turbulence in the deterministic complex Ginzburg-Landau equation. Physical Review. E. 109: 064149 |
Fontaine C, Vercesi F, Brachet M, et al. (2024) Unpredicted Scaling of the One-Dimensional Kardar-Parisi-Zhang Equation. Physical Review Letters. 131: 247101 |
Marguet B, Agoritsas E, Canet L, et al. (2021) Supersymmetries in nonequilibrium Langevin dynamics. Physical Review. E. 104: 044120 |
Squizzato D, Canet L. (2019) Kardar-Parisi-Zhang equation with temporally correlated noise: A nonperturbative renormalization group approach. Physical Review. E. 100: 062143 |
Mathey S, Agoritsas E, Kloss T, et al. (2017) Kardar-Parisi-Zhang equation with short-range correlated noise: Emergent symmetries and nonuniversal observables. Physical Review. E. 95: 032117 |
Canet L, Rossetto V, Wschebor N, et al. (2017) Spatiotemporal velocity-velocity correlation function in fully developed turbulence. Physical Review. E. 95: 023107 |
Canet L, Delamotte B, Wschebor N. (2016) Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution. Physical Review. E. 93: 063101 |
Canet L, Delamotte B, Wschebor N. (2015) Fully developed isotropic turbulence: Symmetries and exact identities. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 91: 053004 |
Kloss T, Canet L, Delamotte B, et al. (2014) Kardar-Parisi-Zhang equation with spatially correlated noise: a unified picture from nonperturbative renormalization group. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 89: 022108 |