Alain Krol - Publications

Affiliations: 
Institut de Biologie Moléculaire et Cellulaire IBMC CNRS Universite de Strasbourg (France) 

100 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2018 Kossinova O, Malygin A, Krol A, Karpova G. Specific Chemical Approaches for Studying Mammalian Ribosomes Complexed with Ligands Involved in Selenoprotein Synthesis. Methods in Molecular Biology (Clifton, N.J.). 1661: 73-92. PMID 28917038 DOI: 10.1007/978-1-4939-7258-6_6  0.456
2016 Gladyshev VN, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA, Burk RF, Carlson BA, Castellano S, Chavatte L, Conrad M, Copeland PR, Diamond AM, Driscoll DM, Ferreiro A, Flohé L, ... ... Krol A, et al. Selenoprotein Gene Nomenclature. The Journal of Biological Chemistry. PMID 27645994 DOI: 10.1074/Jbc.M116.756155  0.338
2014 Wurth L, Gribling-Burrer AS, Verheggen C, Leichter M, Takeuchi A, Baudrey S, Martin F, Krol A, Bertrand E, Allmang C. Hypermethylated-capped selenoprotein mRNAs in mammals. Nucleic Acids Research. 42: 8663-77. PMID 25013170 DOI: 10.1093/Nar/Gku580  0.436
2014 Kossinova O, Malygin A, Krol A, Karpova G. The SBP2 protein central to selenoprotein synthesis contacts the human ribosome at expansion segment 7L of the 28S rRNA. Rna (New York, N.Y.). 20: 1046-56. PMID 24850884 DOI: 10.1261/Rna.044917.114  0.449
2013 Kossinova O, Malygin A, Krol A, Karpova G. A novel insight into the mechanism of mammalian selenoprotein synthesis. Rna (New York, N.Y.). 19: 1147-58. PMID 23788723 DOI: 10.1261/Rna.036871.112  0.536
2011 Anno YN, Myslinski E, Ngondo-Mbongo RP, Krol A, Poch O, Lecompte O, Carbon P. Genome-wide evidence for an essential role of the human Staf/ZNF143 transcription factor in bidirectional transcription. Nucleic Acids Research. 39: 3116-27. PMID 21177654 DOI: 10.1093/Nar/Gkq1301  0.362
2010 Kaya A, Koc A, Lee BC, Fomenko DE, Rederstorff M, Krol A, Lescure A, Gladyshev VN. Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry. 49: 8618-25. PMID 20799725 DOI: 10.1021/Bi100908V  0.315
2010 Gérard MA, Myslinski E, Chylak N, Baudrey S, Krol A, Carbon P. The scaRNA2 is produced by an independent transcription unit and its processing is directed by the encoding region. Nucleic Acids Research. 38: 370-81. PMID 19906720 DOI: 10.1093/Nar/Gkp988  0.508
2009 Oliéric V, Wolff P, Takeuchi A, Bec G, Birck C, Vitorino M, Kieffer B, Beniaminov A, Cavigiolio G, Theil E, Allmang C, Krol A, Dumas P. SECIS-binding protein 2, a key player in selenoprotein synthesis, is an intrinsically disordered protein. Biochimie. 91: 1003-9. PMID 19467292 DOI: 10.1016/J.Biochi.2009.05.004  0.501
2009 Allmang C, Wurth L, Krol A. The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochimica Et Biophysica Acta. 1790: 1415-23. PMID 19285539 DOI: 10.1016/J.Bbagen.2009.03.003  0.418
2009 Lescure A, Rederstorff M, Krol A, Guicheney P, Allamand V. Selenoprotein function and muscle disease. Biochimica Et Biophysica Acta. 1790: 1569-74. PMID 19285112 DOI: 10.1016/J.Bbagen.2009.03.002  0.311
2009 Takeuchi A, Schmitt D, Chapple C, Babaylova E, Karpova G, Guigo R, Krol A, Allmang C. A short motif in Drosophila SECIS Binding Protein 2 provides differential binding affinity to SECIS RNA hairpins. Nucleic Acids Research. 37: 2126-41. PMID 19223320 DOI: 10.1093/nar/gkp078  0.419
2009 Chapple CE, Guigó R, Krol A. SECISaln, a web-based tool for the creation of structure-based alignments of eukaryotic SECIS elements. Bioinformatics (Oxford, England). 25: 674-5. PMID 19179357 DOI: 10.1093/bioinformatics/btp020  0.397
2009 Hirosawa-Takamori M, Ossipov D, Novoselov SV, Turanov AA, Zhang Y, Gladyshev VN, Krol A, Vorbrüggen G, Jäckle H. A novel stem loop control element-dependent UGA read-through system without translational selenocysteine incorporation in Drosophila. Faseb Journal : Official Publication of the Federation of American Societies For Experimental Biology. 23: 107-13. PMID 18772345 DOI: 10.1096/Fj.08-116640  0.411
2008 Beniaminov A, Westhof E, Krol A. Distinctive structures between chimpanzee and human in a brain noncoding RNA Rna. 14: 1270-1275. PMID 18511501 DOI: 10.1261/Rna.1054608  0.469
2008 Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jády BE, Rothé B, Pescia C, Robert MC, Kiss T, Bardoni B, Krol A, Branlant C, Allmang C, Bertrand E, et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. The Journal of Cell Biology. 180: 579-95. PMID 18268104 DOI: 10.1083/Jcb.200708110  0.438
2007 Gérard MA, Krol A, Carbon P. Transcription factor hStaf/ZNF143 is required for expression of the human TFAM gene Gene. 401: 145-153. PMID 17707600 DOI: 10.1016/J.Gene.2007.07.011  0.41
2007 Myslinski E, Gérard MA, Krol A, Carbon P. Transcription of the human cell cycle regulated BUB1B gene requires hStaf/ZNF143. Nucleic Acids Research. 35: 3453-64. PMID 17478512 DOI: 10.1093/Nar/Gkm239  0.406
2007 Cléry A, Bourguignon-Igel V, Allmang C, Krol A, Branlant C. An improved definition of the RNA-binding specificity of SECIS-binding protein 2, an essential component of the selenocysteine incorporation machinery Nucleic Acids Research. 35: 1868-1884. PMID 17332014 DOI: 10.1093/Nar/Gkm066  0.483
2006 Myslinski E, Gérard MA, Krol A, Carbon P. A genome scale location analysis of human Staf/ZNF143-binding sites suggests a widespread role for human Staf/ZNF143 in mammalian promoters. The Journal of Biological Chemistry. 281: 39953-62. PMID 17092945 DOI: 10.1074/Jbc.M608507200  0.439
2006 Allmang C, Krol A. Selenoprotein synthesis: UGA does not end the story Biochimie. 88: 1561-1571. PMID 16737768 DOI: 10.1016/J.Biochi.2006.04.015  0.394
2006 Allamand V, Richard P, Lescure A, Ledeuil C, Desjardin D, Petit N, Gartioux C, Ferreiro A, Krol A, Pellegrini N, Urtizberea JA, Guicheney P. A single homozygous point mutation in a 3'untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. Embo Reports. 7: 450-4. PMID 16498447 DOI: 10.1038/Sj.Embor.7400648  0.444
2006 Allmang C, Krol A. SECIS RNAs and K-turn binding proteins. A survey of evolutionary conserved RNA and protein motifs Selenium: Its Molecular Biology and Role in Human Health, Second Edition. 51-61. DOI: 10.1007/0-387-33827-6_5  0.413
2005 Castellano S, Lobanov AV, Chapple C, Novoselov SV, Albrecht M, Hua D, Lescure A, Lengauer T, Krol A, Gladyshev VN, Guigó R. Diversity and functional plasticity of eukaryotic selenoproteins: identification and characterization of the SelJ family. Proceedings of the National Academy of Sciences of the United States of America. 102: 16188-93. PMID 16260744 DOI: 10.1073/Pnas.0505146102  0.383
2004 Myslinski E, Krol A, Carbon P. Characterization of snRNA and snRNA-type genes in the pufferfish Fugu rubripes. Gene. 330: 149-58. PMID 15087134 DOI: 10.1016/J.Gene.2004.01.021  0.441
2004 Castellano S, Novoselov SV, Kryukov GV, Lescure A, Blanco E, Krol A, Gladyshev VN, Guigó R. Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. Embo Reports. 5: 71-7. PMID 14710190 DOI: 10.1038/Sj.Embor.7400036  0.332
2003 Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B, Wewer UM, Guicheney P. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Human Molecular Genetics. 12: 1045-53. PMID 12700173 DOI: 10.1093/Hmg/Ddg115  0.379
2002 Krol A. Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis Biochimie. 84: 765-774. PMID 12457564 DOI: 10.1016/S0300-9084(02)01405-0  0.516
2002 Allmang C, Carbon P, Krol A. The SBP2 and 15.5 kD/Snu13p proteins share the same RNA binding domain: Identification of SBP2 amino acids important to SECIS RNA binding Rna. 8: 1308-1318. PMID 12403468 DOI: 10.1017/S1355838202020034  0.552
2002 Lescure A, Fagegaltier D, Carbon P, Krol A. Protein factors mediating selenoprotein synthesis Current Protein and Peptide Science. 3: 143-151. PMID 12370018 DOI: 10.2174/1389203023380783  0.773
2002 Lescure A, Allmang C, Yamada K, Carbon P, Krol A. cDNA cloning, expression pattern and RNA binding analysis of human selenocysteine insertion sequence (SECIS) binding protein 2. Gene. 291: 279-85. PMID 12095701 DOI: 10.1016/S0378-1119(02)00629-7  0.558
2001 Fagegaltier D, Carbon P, Krol A. Distinctive features in the SelB family of elongation factors for selenoprotein synthesis. A glimpse of an evolutionary complexified translation apparatus Biofactors. 14: 5-10. PMID 11568434 DOI: 10.1002/Biof.5520140102  0.725
2001 Fagegaltier D, Carbon P, Krol A. Distinctive features in the SelB family of elongation factors for selenoprotein synthesis. A glimpse of an evolutionary complexified translation apparatus. Biofactors. PMID 11568434  0.723
2001 Myslinski E, Amé J, Krol A, Carbon P. An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene Nucleic Acids Research. 29: 2502-2509. PMID 11410657 DOI: 10.1093/Nar/29.12.2502  0.511
2000 Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. The Embo Journal. 19: 4796-805. PMID 10970870 DOI: 10.1093/Emboj/19.17.4796  0.768
2000 Fagegaltier D, Lescure A, Walczak R, Carbon P, Krol A. Structural analysis of new local features in SECIS RNA hairpins. Nucleic Acids Res.. PMID 10908323 DOI: 10.1093/Nar/28.14.2679  0.752
2000 Schaub M, Krol A, Carbon P. Structural organization of Staf–DNA complexes Nucleic Acids Research. 28: 2114-2121. PMID 10773080 DOI: 10.1093/Nar/28.10.2114  0.419
2000 Fagegaltier D, Hubert N, Carbon P, Krol A. The selenocysteine insertion sequence binding protein SBP is different from the Y-box protein dbpB. Biochimie. 82: 117-22. PMID 10727766 DOI: 10.1016/S0300-9084(00)00192-9  0.735
2000 Lescure A, Gautheret D, Fagegaltier D, Carbon P, Krol A. From RNA Structure to the Identification of New Genes. The Example of Selenoproteins. Journal of Health Science. 46: 405-408. DOI: 10.1248/Jhs.46.405  0.757
1999 Lescure A, Gautheret D, Carbon P, Krol A. Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. Journal of Biological Chemistry. 274: 38147-38154. PMID 10608886 DOI: 10.1074/Jbc.274.53.38147  0.522
1999 Schaub M, Myslinski E, Krol A, Carbon P. Maximization of selenocysteine tRNA and U6 small nuclear RNA transcriptional activation achieved by flexible utilization of a Staf zinc finger. Journal of Biological Chemistry. 274: 25042-25050. PMID 10455183 DOI: 10.1074/Jbc.274.35.25042  0.455
1999 Schaub M, Krol A, Carbon P. Flexible Zinc Finger Requirement for Binding of the Transcriptional Activator Staf to U6 Small Nuclear RNA and tRNASec Promoters Journal of Biological Chemistry. 274: 24241-24249. PMID 10446199 DOI: 10.1074/Jbc.274.34.24241  0.481
1998 Hubert N, Sturchler C, Westhof E, Carbon P, Krol A. The 9/4 secondary structure of eukaryotic selenocysteine tRNA: more pieces of evidence. Rna (New York, N.Y.). 4: 1029-33. PMID 9740122 DOI: 10.1017/S1355838298980888  0.306
1998 Myslinski E, Krol A, Carbon P. ZNF76 and ZNF143 Are Two Human Homologs of the Transcriptional Activator Staf Journal of Biological Chemistry. 273: 21998-22006. PMID 9705341 DOI: 10.1074/Jbc.273.34.21998  0.49
1998 Schuster C, Krol A, Carbon P. Two Distinct Domains in Staf To Selectively Activate Small Nuclear RNA-Type and mRNA Promoters Molecular and Cellular Biology. 18: 2650-2658. PMID 9566884 DOI: 10.1128/Mcb.18.5.2650  0.473
1997 Schaub M, Myslinski E, Schuster C, Krol A, Carbon P. Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III The Embo Journal. 16: 173-181. PMID 9009278 DOI: 10.1093/Emboj/16.1.173  0.51
1996 Hubert N, Walczak R, Sturchler C, Myslinski E, Schuster C, Westhof E, Carbon P, Krol A. RNAs mediating cotranslational insertion of selenocysteine in eukaryotic selenoproteins. Biochimie. 78: 590-6. PMID 8955902 DOI: 10.1016/S0300-9084(96)80005-8  0.538
1996 Hubert N, Walczak R, Carbon P, Krol A. A protein binds the selenocysteine insertion element in the 3'-UTR of mammalian selenoprotein mRNAs. Nucleic Acids Research. 24: 464-9. PMID 8602359 DOI: 10.1093/Nar/24.3.464  0.51
1995 Gabryszuk J, Przykorska A, Monko M, Kuligowska E, Sturchler C, Krol A, Dirheimer G, Szarkowski JW, Keith G. Native bovine selenocysteine tRNA(Sec) secondary structure as probed by two plant single-strand-specific nucleases. Gene. 161: 259-63. PMID 7665090 DOI: 10.1016/0378-1119(95)00287-G  0.415
1995 Sturchler-Pierrat C, Hubert N, Totsuka T, Mizutani T, Carbon P, Krol A. Selenocysteylation in eukaryotes necessitates the uniquely long aminoacyl acceptor stem of selenocysteine tRNA(Sec). The Journal of Biological Chemistry. 270: 18570-4. PMID 7629188 DOI: 10.1074/Jbc.270.31.18570  0.304
1995 Schuster C, Myslinski E, Krol A, Carbon P. Staf, a novel zinc finger protein that activates the RNA polymerase III promoter of the selenocysteine tRNA gene. The Embo Journal. 14: 3777-3787. DOI: 10.1002/J.1460-2075.1995.Tb00047.X  0.524
1994 Myslinski E, Schuster C, Huet J, Sentenac A, Krol A, Carbon P. Point mutations 5' to the tRNA selenocysteine TATA box alter RNA polymerase III transcription by affecting the binding of TBP. Nucleic Acids Research. 21: 5852-8. PMID 8290344 DOI: 10.1093/Nar/21.25.5852  0.453
1994 Meißner W, Wanandi I, Carbon P, Krol A, Seifart KH. Transcription factors required for the expression of Xenopus laevis selenocysteine tRNA in vitro Nucleic Acids Research. 22: 553-559. PMID 8127703 DOI: 10.1093/Nar/22.4.553  0.46
1994 Gelder CWGv, Thijssen JPHM, Klaassen ECJ, Sturchler C, Krol A, Walther Jv, Pruijn GJM. Common structural features of the Ro RNP associated hY1 and hY5 RNAs Nucleic Acids Research. 22: 2498-2506. PMID 8041611 DOI: 10.1093/Nar/22.13.2498  0.453
1994 Baron C, Sturchler C, Wu X, Gross HJ, Krol A, Böck A. Eukaryotic selenocysteine inserting tRNA species support selenoprotein synthesis in Escherichia coli Nucleic Acids Research. 22: 2228-2233. PMID 8036149 DOI: 10.1093/Nar/22.12.2228  0.393
1994 Sturchler C, Lescure A, Keith G, Carbon P, Krol A. Base modification pattern at the wobble position of Xenopus selenocysteine tRNA(Sec). Nucleic Acids Research. 22: 1354-8. PMID 8031393 DOI: 10.1093/Nar/22.8.1354  0.415
1993 Sturchler C, Westhof E, Carbon P, Krol A. Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNASec Nucleic Acids Research. 21: 1073-1079. PMID 8464694 DOI: 10.1093/Nar/21.5.1073  0.355
1993 Myslinski E, Schuster C, Krol A, Carbon P. Promoter strength and structure dictate module composition in RNA polymerase III transcriptional activator elements Journal of Molecular Biology. 234: 311-318. PMID 7693950 DOI: 10.1006/Jmbi.1993.1588  0.447
1992 Murgo S, Krol A, Carbon P. Two differential transcriptional activity of two amphibian U1 small-nuclear RNA genes correlates with structural differences in the proximal sequence element European Journal of Biochemistry. 203: 443-447. PMID 1735429 DOI: 10.1111/J.1432-1033.1992.Tb16568.X  0.485
1992 Lescure A, Murgo S, Carbon P, Krol A. The proximal promoter and the start site cooperate to specify correct U1 snRNA transcription initiation by RNA polymerase II Nucleic Acids Research. 20: 1573-1578. PMID 1579449 DOI: 10.1093/Nar/20.7.1573  0.465
1992 Sturchier C, Carbon P, Krol A. An additional long-range interaction in human U1 snRNA Nucleic Acids Research. 20: 1215-1221. PMID 1532853 DOI: 10.1093/Nar/20.6.1215  0.442
1992 Lescure A, Tebb G, Mattaj IW, Krol A, Carbon P. A factor with Sp1 DNA-binding specificity stimulates Xenopus U6 snRNA in vivo transcription by RNA polymerase III. Journal of Molecular Biology. 228: 387-94. PMID 1453450 DOI: 10.1016/0022-2836(92)90828-8  0.498
1992 Myslinski E, Krol A, Carbon P. Optimal tRNA(ser)sec gene activity requires an upstream SPH motif Nucleic Acids Research. 20: 203-209. PMID 1311068 DOI: 10.1093/Nar/20.2.203  0.415
1991 Murgo S, Krol A, Carbon P. Sequence, organization and transcriptional analysis of a gene encoding a Ul snRNA from the axolotl, Ambystoma mexicanum Gene. 99: 163-170. PMID 2022330 DOI: 10.1016/0378-1119(91)90123-S  0.462
1991 Lescure A, Carbon P, Krol A. The different positioning of the proximal sequence element in the xenopus RNA polymerase II and III snRNA promoters is a key determinant which confers RNA polymerase III specificity Nucleic Acids Research. 19: 435-441. PMID 2011518 DOI: 10.1093/Nar/19.3.435  0.438
1991 Carbon P, Krol A. Transcription of the Xenopus laevis selenocysteine tRNA(Ser)Sec gene: a system that combines an internal B box and upstream elements also found in U6 snRNA genes. The Embo Journal. 10: 599-606. DOI: 10.1002/J.1460-2075.1991.Tb07987.X  0.454
1990 Kretzner L, Krol A, Rosbash M. Saccharomyces cerevisiae U1 small nuclear RNA secondary structure contains both universal and yeast-specific domains. Proceedings of the National Academy of Sciences of the United States of America. 87: 851-5. PMID 2405391 DOI: 10.1073/Pnas.87.2.851  0.352
1990 Krol A, Westhof E, Bach M, Lührmann R, Ebel JP, Carbon P. Solution structure of human U1 snRNA. Derivation of a possible three-dimensional model. Nucleic Acids Research. 18: 3803-11. PMID 2374709 DOI: 10.1093/Nar/18.13.3803  0.338
1990 Bach M, Krol A, Lührmann R. Structure-probing of U1 snRNPs gradually depleted of the U1-specific proteins A, c and 70k. Evidence that a interacts differentially with developmentally regulated mouse U1 snRNA variants Nucleic Acids Research. 18: 449-457. PMID 2137909 DOI: 10.1093/Nar/18.3.449  0.456
1989 Krol A, Carbon P. A guide for probing native small nuclear RNA and ribonucleoprotein structures Methods in Enzymology. 180: 212-227. PMID 2515419 DOI: 10.1016/0076-6879(89)80103-X  0.434
1988 Mattaj IW, Dathan NA, Parry HD, Carbon P, Krol A. Changing the RNA polymerase specificity of U snRNA gene promoters. Cell. 55: 435-42. PMID 3180217 DOI: 10.1016/0092-8674(88)90029-3  0.495
1987 Carbon P, Murgo S, Ebel JP, Krol A, Tebb G, Mattaj LW. A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell. 51: 71-9. PMID 3652209 DOI: 10.1016/0092-8674(87)90011-0  0.534
1987 Krol A, Carbon P, Ebel JP, Appel B. Xenopus tropicalis U6 snRNA genes transcribed by Pol III contain the upstream promoter elements used by Pol II dependent U snRNA genes. Nucleic Acids Research. 15: 2463-78. PMID 3031599 DOI: 10.1093/Nar/15.6.2463  0.496
1983 Krol A, Ebel JP, Rinke J, Luhrmann R. U1, U2 and U5 small nuclear RNAs are found in plants cells. Complete nucleotide sequence of the U5 RNA family from pea nuclei. Nucleic Acids Research. 11: 8583-94. PMID 6200829 DOI: 10.1093/Nar/11.24.8583  0.46
1983 Branlant C, Krol A, Lazar E, Haendler B, Jacob M, Galego-Dias L, Pousada C. High evolutionary conservation of the secondary structure and of certain nucleotide sequences of U5 RNA. Nucleic Acids Research. 11: 8359-67. PMID 6200827 DOI: 10.1093/Nar/11.23.8359  0.481
1982 Branlant C, Krol A, Ebel JP, Lazar E, Haendler B, Jacob M. U2 RNA shares a structural domain with U1, U4, and U5 RNAs. The Embo Journal. 1: 1259-65. PMID 6202507  0.387
1982 Lazar E, Jocob M, Krol A, Branlant C. Accessibility of U1 RNA to base pairing with a single-stranded DNA fragment mimicking the intron extremities at the splice junction Nucleic Acids Research. 10: 1193-1201. PMID 6175953 DOI: 10.1093/Nar/10.4.1193  0.468
1982 Branlant C, Krol A, Ebel JP, Lazar E, Haendler B, Jacob M. U2 RNA shares a structural domain with U1, U4, and U5 RNAs. The Embo Journal. 1: 1259-1265. DOI: 10.1002/J.1460-2075.1982.Tb00022.X  0.484
1981 Veldman GM, Klootwijk J, de Regt VC, Planta RJ, Branlant C, Krol A, Ebel JP. The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Research. 9: 6935-52. PMID 7335496 DOI: 10.1093/Nar/9.24.6935  0.404
1981 Branlant C, Krol A, Machatt A, Ebel JP. The secondary structure of the protein L1 binding region of ribosomal 23S RNA. Homologies with putative secondary structures of the L11 mRNA and of a region of mitochondrial 16S rRNA. Nucleic Acids Research. 9: 293-307. PMID 7010313 DOI: 10.1093/Nar/9.2.293  0.461
1981 Branlant C, Krol A, Machatt MA, Pouyet J, Ebel JP, Edwards K, Kössel H. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucleic Acids Research. 9: 4303-24. PMID 6170936 DOI: 10.1093/Nar/9.17.4303  0.438
1981 Krol A, Branlant C, Lazar E, Gallinaro H, Jacob M. Primary and secondary structures of chicken, rat and man nuclear U4 RNAs. Homologies with U1 and U5 RNAs Nucleic Acids Research. 9: 2699-2716. PMID 6169000 DOI: 10.1093/Nar/9.12.2699  0.495
1981 Gallinaro H, Lazar E, Jacob M, Krol A, Branlant C. Small RNAs in HnRNP fibrils and their possible function in splicing. Molecular Biology Reports. 7: 31-39. PMID 6166851 DOI: 10.1007/Bf00778730  0.428
1981 Branlant C, Krol A, Ebel JP, Gallinaro H, Lazar E, Jacob M. The conformation of chicken, rat and human U1A RNAs in solution. Nucleic Acids Research. 9: 841-58. PMID 6164982 DOI: 10.1093/Nar/9.4.841  0.436
1981 Krol A, Gallinaro H, Lazar E, Jacob M, Branlant C. The nuclear 5S RNAs from chicken, rat and man. US RNAs are encoded by multiple genes Nucleic Acids Research. 9: 769-787. PMID 6164980 DOI: 10.1093/Nar/9.4.769  0.461
1980 Branlant C, Krol A, Ebel JP, Lazar E, Gallinaro H, Jacob M, Sri-Widada J, Jeanteur P. Nucleotide sequences of nuclear U1A RNAs from chicken, rat and man. Nucleic Acids Research. 8: 4143-54. PMID 6159587 DOI: 10.1093/Nar/8.18.4143  0.456
1979 Branlant C, Krol A, Machatt MA, Ebel JP. Structural study of ribosomal 23 S RNA from Escherichia coli. Febs Letters. 107: 177-81. PMID 387450 DOI: 10.1016/0014-5793(79)80490-1  0.465
1978 Branlant C, Widada JS, Krol A, Ebel JP. Studies on the primary structure of the ribosomal 23S RNA of Escherichia coli: II. A characterisation and an alignment of 24 sections spanning the entire molecule and its application to the localisation of specific fragments. Nucleic Acids Research. 4: 4323-45. PMID 414209 DOI: 10.1093/Nar/4.12.4323  0.437
1978 Krol A, Machatt MA, Branlant C, Ebel JP. RNA-RNA interactions in the binding site of protein L24 on 23S ribosomal RNA of E. coli. II. Sequence analysis of the interacting fragments. Nucleic Acids Research. 5: 4933-47. PMID 370782 DOI: 10.1093/Nar/5.12.4933  0.49
1977 Branlant C, Krol A, Sriwdada J, Ebel JP, Sloof P, Garrett RA. The binding site of protein L1 ON 23-S ribosomal RNA of Escherichia coli. 2. Identification of the rna region contained in the L1 ribonucleoproteins and determination of the order of the RNA subfragments within this region. European Journal of Biochemistry. 70: 457-69. PMID 827439 DOI: 10.1111/J.1432-1033.1976.TB11037.X  0.38
1977 Sloof P, Garrett R, Krol A, Branlant C. The binding site of protein L1 on 23-S ribosomal RNA of Escherichia coli. 1. Isolation and characterization. European Journal of Biochemistry. 70: 447-56. PMID 827438 DOI: 10.1111/J.1432-1033.1976.Tb11036.X  0.49
1977 Branlant C, Sri Widada J, Krol A, Ebel JP. RNA sequences in ribonucleoprotein fragments of the complex formed from ribosomal 23-S RNA and ribosomal protein L24 of Escherichia coli. European Journal of Biochemistry. 74: 155-70. PMID 404143 DOI: 10.1111/J.1432-1033.1977.Tb11377.X  0.49
1977 Krol A, Branlant C, Ebel JP, Visentin LP. Recognition of RNA by ribosomal protein S1: interaction of S1 with 23 S rRNA of Escherichia coli. Febs Letters. 80: 255-60. PMID 330245 DOI: 10.1016/0014-5793(77)80452-3  0.477
1976 Branlant C, Krol A, Sriwidada J, Brimacombe R. RNA Sequences Associated with Proteins L1, L9, and L5, L18, L25, in Ribonucleoprotein Fragments Isolated from the 50-S Subunit of Escherichia coli Ribosomes Febs Journal. 70: 483-492. PMID 827440 DOI: 10.1111/J.1432-1033.1976.Tb11039.X  0.401
1976 Branlant C, Widada JS, Krol A, Ebel JP. Extensions of the known sequences at the 3' and 5' ends of 23S ribosomal RNA from Escherichia coli, possible base pairing between these 23S RNA regions and 16S ribosomal RNA. Nucleic Acids Research. 3: 1671-87. PMID 823528 DOI: 10.1093/Nar/3.7.1671  0.458
1975 Branlant C, Krol A, Sriwidada J, Ebel JP, Sloof P, Garrett R. A partial localisation of the binding sites of the 50 S subunit proteins L1, L20 and L23 on 23 S ribosomal RNA of Escherichia coli. Febs Letters. 52: 195-201. PMID 1093869 DOI: 10.1016/0014-5793(75)80805-2  0.365
1975 Branlant C, Widada JS, Krol A, Fellner P, Ebel JP. Nucleotide sequences of the T1 and pancreatic ribonuclease digestion products from some large fragments of the 23S RNA of Escherichia coli. Biochimie. 57: 175-225. PMID 806306 DOI: 10.1016/S0300-9084(75)80168-4  0.411
1975 Fischel JL, Krol A, Ehresmann C, Fellner P, Ebel JP. Comparative study of the 16S RNA's of Escherichia coli and Proteus vulgaris. Biochimie. 57: 885-97. PMID 769841 DOI: 10.1016/S0300-9084(75)80211-2  0.462
1975 Hayes F, Vasseur M, Nikolaev N, Schlessinger D, Widada JS, Krol A, Branlant C. Structure of a 30 S pre-ribosomal RNA of E. coli. Febs Letters. 56: 85-91. PMID 169158 DOI: 10.1016/0014-5793(75)80117-7  0.4
1973 Branlant C, Krol A, Sriwidada J, Fellner P, Crichton R. The identification of the RNA binding site for a 50 S ribosomal protein by a new technique. Febs Letters. 35: 265-72. PMID 4582942 DOI: 10.1016/0014-5793(73)80301-1  0.348
Show low-probability matches.