Year |
Citation |
Score |
2024 |
Bloxham J, Cao H, Stevenson DJ, Connerney JEP, Bolton SJ. A rapidly time-varying equatorial jet in Jupiter's deep interior. Nature. 627: 64-66. PMID 38448696 DOI: 10.1038/s41586-024-07046-3 |
0.528 |
|
2020 |
Yadav RK, Bloxham J. Deep rotating convection generates the polar hexagon on Saturn. Proceedings of the National Academy of Sciences of the United States of America. PMID 32513703 DOI: 10.1073/Pnas.2000317117 |
0.373 |
|
2020 |
Kulowski L, Cao H, Bloxham J. Contributions to Jupiter's Gravity Field From Dynamics in the Dynamo Region Journal of Geophysical Research: Planets. 125. DOI: 10.1029/2019Je006165 |
0.454 |
|
2019 |
Moore KM, Cao H, Bloxham J, Stevenson DJ, Connerney JEP, Bolton SJ. Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection Nature Astronomy. 3: 730-735. DOI: 10.1038/S41550-019-0772-5 |
0.551 |
|
2018 |
Moore KM, Yadav RK, Kulowski L, Cao H, Bloxham J, Connerney JEP, Kotsiaros S, Jørgensen JL, Merayo JMG, Stevenson DJ, Bolton SJ, Levin SM. A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Nature. 561: 76-78. PMID 30185957 DOI: 10.1038/S41586-018-0468-5 |
0.616 |
|
2018 |
Kaspi Y, Galanti E, Hubbard WB, Stevenson DJ, Bolton SJ, Iess L, Guillot T, Bloxham J, Connerney JEP, Cao H, Durante D, Folkner WM, Helled R, Ingersoll AP, Levin SM, et al. Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature. 555: 223-226. PMID 29516995 DOI: 10.1038/Nature25793 |
0.471 |
|
2018 |
Connerney JEP, Kotsiaros S, Oliversen RJ, Espley JR, Joergensen JL, Joergensen PS, Merayo JMG, Herceg M, Bloxham J, Moore KM, Bolton SJ, Levin SM. A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits Geophysical Research Letters. 45: 2590-2596. DOI: 10.1002/2018Gl077312 |
0.533 |
|
2017 |
Bolton SJ, Adriani A, Adumitroaie V, Allison M, Anderson J, Atreya S, Bloxham J, Brown S, Connerney JEP, DeJong E, Folkner W, Gautier D, Grassi D, Gulkis S, Guillot T, et al. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science (New York, N.Y.). 356: 821-825. PMID 28546206 DOI: 10.1126/Science.Aal2108 |
0.482 |
|
2017 |
Moore KM, Bloxham J, Connerney JEP, Jørgensen JL, Merayo JMG. The analysis of initial Juno magnetometer data using a sparse magnetic field representation Geophysical Research Letters. 44: 4687-4693. DOI: 10.1002/2017Gl073133 |
0.575 |
|
2017 |
Moore KM, Bloxham J. The construction of sparse models of Mars's crustal magnetic field Journal of Geophysical Research: Planets. 122: 1443-1457. DOI: 10.1002/2016Je005238 |
0.575 |
|
2016 |
Stanley S, Bloxham J. On the secular variation of Saturn's magnetic field Physics of the Earth and Planetary Interiors. 250: 31-34. DOI: 10.1016/J.Pepi.2015.11.002 |
0.782 |
|
2010 |
Sterenborg MG, Bloxham J. Can Cassini magnetic field measurements be used to find the rotation period of Saturn's interior? Geophysical Research Letters. 37. DOI: 10.1029/2010Gl043250 |
0.597 |
|
2007 |
Stanley S, Zuber MT, Bloxham J. Using reversed magnetic flux spots to determine a planet's inner core size Geophysical Research Letters. 34. DOI: 10.1029/2007Gl030892 |
0.756 |
|
2006 |
Dumberry M, Bloxham J. Azimuthal flows in the Earth's core and changes in length of day at millennial timescales Geophysical Journal International. 165: 32-46. DOI: 10.1111/J.1365-246X.2006.02903.X |
0.741 |
|
2006 |
Stanley S, Bloxham J. Numerical dynamo models of Uranus' and Neptune's magnetic fields Icarus. 184: 556-572. DOI: 10.1016/J.Icarus.2006.05.005 |
0.79 |
|
2005 |
Stanley S, Bloxham J, Hutchison WE, Zuber MT. Thin shell dynamo models consistent with Mercury's weak observed magnetic field Earth and Planetary Science Letters. 234: 27-38. DOI: 10.1016/J.Epsl.2005.02.040 |
0.789 |
|
2004 |
Stanley S, Bloxham J. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields. Nature. 428: 151-3. PMID 15014493 DOI: 10.1038/Nature02376 |
0.795 |
|
2004 |
Dumberry M, Bloxham J. Variations in the Earth's gravity field caused by torsional oscillations in the core Geophysical Journal International. 159: 417-434. DOI: 10.1111/J.1365-246X.2004.02402.X |
0.754 |
|
2003 |
Dumberry M, Bloxham J. Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo Physics of the Earth and Planetary Interiors. 140: 29-51. DOI: 10.1016/J.Pepi.2003.07.012 |
0.709 |
|
2002 |
Bloxham J, Zatman S, Dumberry M. The origin of geomagnetic jerks. Nature. 420: 65-8. PMID 12422214 DOI: 10.1038/Nature01134 |
0.74 |
|
2002 |
Dumberry M, Bloxham J. Inner core tilt and polar motion Geophysical Journal International. 151: 377-392. DOI: 10.1046/J.1365-246X.2002.01756.X |
0.729 |
|
2002 |
Buffett BA, Bloxham J. Energetics of numerical geodynamo models Geophysical Journal International. 149: 211-224. DOI: 10.1046/J.1365-246X.2002.01644.X |
0.547 |
|
2002 |
Bloxham J. Time-independent and time-dependent behaviour of high-latitude flux bundles at the core-mantle boundary Geophysical Research Letters. 29: 1-1. DOI: 10.1029/2001Gl014543 |
0.505 |
|
2001 |
Katari K, Bloxham J. Effects of sediment aggregate size on DRM intensity: A new theory Earth and Planetary Science Letters. 186: 113-122. DOI: 10.1016/S0012-821X(00)00386-1 |
0.742 |
|
2000 |
Bloxham J. Sensitivity of the geomagnetic axial dipole to thermal core-mantle interactions Nature. 405: 63-5. PMID 10811217 DOI: 10.1038/35011045 |
0.631 |
|
2000 |
Bloxham J. The effect of thermal core-mantle interactions on the palaeomagnetic secular variation Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences. 358: 1171-1179. DOI: 10.1098/Rsta.2000.0579 |
0.433 |
|
2000 |
Olsen N, Holme R, Hulot G, Sabaka T, Neubert T, Tøffner-Clausen L, Primdahl F, Jørgensen J, Léger JM, Barraclough D, Bloxham J, Cain J, Constable C, Golovkov V, Jackson A, et al. Ørstead initial field model Geophysical Research Letters. 27: 3607-3610. DOI: 10.1029/2000Gl011930 |
0.576 |
|
2000 |
Buffett BA, Bloxham J. Deformation of earth's inner core by electromagnetic forces Geophysical Research Letters. 27: 4001-4004. DOI: 10.1029/2000Gl011790 |
0.417 |
|
1999 |
Zatman S, Bloxham J. On the dynamical implications of models of B(s) in the Earth's core Geophysical Journal International. 138: 679-686. DOI: 10.1046/J.1365-246X.1999.00909.X |
0.411 |
|
1999 |
Bergman MI, Fearn DR, Bloxham J. Suppression of channel convection in solidifying Pb-Sn alloys via an applied magnetic field Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science. 30: 1809-1815. DOI: 10.1007/S11661-999-0179-5 |
0.464 |
|
1999 |
Kuang W, Bloxham J. Numerical Modeling of Magnetohydrodynamic Convection in a Rapidly Rotating Spherical Shell: Weak and Strong Field Dynamo Action Journal of Computational Physics. 153: 51-81. DOI: 10.1006/Jcph.1999.6274 |
0.553 |
|
1998 |
Bloxham J. Dynamics of angular momentum in the Earth's core Annual Review of Earth and Planetary Sciences. 26: 501-517. DOI: 10.1146/Annurev.Earth.26.1.501 |
0.475 |
|
1997 |
Zatman S, Bloxham J. Torsional oscillations and the magnetic field within the Earth's core Nature. 388: 760-763. DOI: 10.1038/41987 |
0.641 |
|
1997 |
Kuang W, Bloxham J. An Earth-like numerical dynamo model Nature. 389: 371-374. DOI: 10.1038/38712 |
0.625 |
|
1997 |
Zatman S, Bloxham J. The phase difference between length of day and atmospheric angular momentum at subannual frequencies and the possible role of core-mantle coupling Geophysical Research Letters. 24: 1799-1802. DOI: 10.1029/97Gl01755 |
0.343 |
|
1997 |
Kuang W, Bloxham J. On the dynamics of topographical core-mantle coupling Physics of the Earth and Planetary Interiors. 99: 289-294. DOI: 10.1016/S0031-9201(96)03203-7 |
0.447 |
|
1996 |
Holme R, Bloxham J. The magnetic fields of Uranus and Neptune: Methods and models Journal of Geophysical Research: Planets. 101: 2177-2200. DOI: 10.1029/95Je03437 |
0.457 |
|
1996 |
Holme R, Bloxham J. The treatment of attitude errors in satellite geomagnetic data Physics of the Earth and Planetary Interiors. 98: 221-233. DOI: 10.1016/S0031-9201(96)03189-5 |
0.441 |
|
1995 |
Bloxham J, Kuang W. Comment on “The topographic torque on a bounding surface of a rotating gravitating fluid and the excitation by core motions of decadal fluctuations in the Earth's rotation” Geophysical Research Letters. 22: 3561-3562. DOI: 10.1029/95Gl03677 |
0.386 |
|
1995 |
Holme R, Bloxham J. Alleviation of the Backus effect in geomagnetic field modelling Geophysical Research Letters. 22: 1641-1644. DOI: 10.1029/95Gl01431 |
0.512 |
|
1995 |
Bush JWM, Stone HA, Bloxham J. Axial Drop Motion in Rotating Fluids Journal of Fluid Mechanics. 282: 247-278. DOI: 10.1017/S0022112095000139 |
0.5 |
|
1994 |
Love JJ, Bloxham J. Electromagnetic coupling and the toroidal magnetic field at the core- mantle boundary Geophysical Journal International. 117: 235-256. DOI: 10.1111/J.1365-246X.1994.Tb03315.X |
0.564 |
|
1993 |
Kuang W, Bloxham J. On The Effect Of Boundary Topography On Flow In The Earth'S Core Geophysical &Amp; Astrophysical Fluid Dynamics. 72: 161-195. DOI: 10.1080/03091929308203611 |
0.509 |
|
1993 |
Bloxham J. Mapping the magnetic field at the core-mantle boundary: constraints on the geodynamo Gsa Today. 3. |
0.514 |
|
1992 |
Bush JWM, Stone HA, Bloxham J. The motion of an inviscid drop in a bounded rotating fluid Physics of Fluids. 4: 1142-1147. DOI: 10.1063/1.858232 |
0.49 |
|
1992 |
Bloxham J, Jackson A. Time-dependent mapping of the magnetic field at the core-mantle boundary Journal of Geophysical Research. 97. DOI: 10.1029/92Jb01591 |
0.526 |
|
1992 |
Bloxham J. The steady part of the secular variation of the Earth's magnetic field Journal of Geophysical Research. 97. DOI: 10.1029/92Jb01469 |
0.615 |
|
1991 |
Jackson A, Bloxham J. Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field Geophysical Journal International. 105: 199-212. DOI: 10.1111/J.1365-246X.1991.Tb03456.X |
0.518 |
|
1991 |
Bloxham J, Jackson A. Fluid flow near the surface of earth's outer core Reviews of Geophysics. 29: 97-120. DOI: 10.1029/90Rg02470 |
0.407 |
|
1991 |
BLOXHAM J, ROBERTS PH. The Geomagnetic Main Field and the Geodynamo Reviews of Geophysics. 29: 428-432. DOI: 10.1002/Rog.1991.29.S1.428 |
0.559 |
|
1990 |
Bloxham J. On the consequences of strong stable stratification at the top of Earth's outer core Geophysical Research Letters. 17: 2081-2084. DOI: 10.1029/Gl017I012P02081 |
0.453 |
|
1990 |
Bloxham J, Jackson A. Lateral temperature variations at the core-mantle boundary deduced from the magnetic field Geophysical Research Letters. 17: 1997-2000. DOI: 10.1029/Gl017I011P01997 |
0.557 |
|
1990 |
Aldridge KD, Bloxham J, Dehant V, Gubbins D, Hide R, Hinderer J, Hutcheson KA, Jault D, Jones CA, Legros H, Le Mouël JL, Lloyd D, Wahr JM, Whaler KA, Zhang K. Core-mantle interactions Surveys in Geophysics. 11: 329-353. DOI: 10.1007/Bf01902965 |
0.673 |
|
1989 |
Bloxham J. Simple models of fluid flow at the core surface derived from geomagnetic field models Geophysical Journal International. 99: 173-182. DOI: 10.1111/J.1365-246X.1989.Tb02022.X |
0.5 |
|
1989 |
Bloxham J, Gubbins D, Jackson A. Geomagnetic Secular Variation Philosophical Transactions of the Royal Society A. 329: 415-502. DOI: 10.1098/Rsta.1989.0087 |
0.686 |
|
1989 |
Bloxham J, Gubbins D. The Evolution of the Earth's Magnetic Field Scientific American. 261: 68-75. DOI: 10.1038/Scientificamerican1289-68 |
0.748 |
|
1989 |
Bloxham J, Jackson A. Simultaneous stochastic inversion for geomagnetic main field and secular variation, 2. 1820-1980 Journal of Geophysical Research. 94. DOI: 10.1029/Jb094Ib11P15753 |
0.506 |
|
1988 |
Bloxham J. The dynamical regime of fluid flow at the core surface Geophysical Research Letters. 15: 585-588. DOI: 10.1029/Gl015I006P00585 |
0.425 |
|
1987 |
Bloxham J, Gubbins D. Thermal core– mantle interactions Nature. 325: 511-513. DOI: 10.1038/325511A0 |
0.704 |
|
1987 |
Gubbins D, Bloxham J. Morphology of the geomagnetic field and implications for the geodynamo Nature. 325: 509-511. DOI: 10.1038/325509A0 |
0.705 |
|
1987 |
Bloxham J. Simultaneous stochastic inversion for geomagnetic main field and secular variation: 1. A large-scale inverse problem Journal of Geophysical Research: Solid Earth. 92: 11597-11608. DOI: 10.1029/Jb092Ib11P11597 |
0.497 |
|
1987 |
Bloxham J, Gubbins D. Thermal core-Mantle interactions Nature. 325: 511-513. |
0.687 |
|
1986 |
Bloxham J. The expulsion of magnetic flux from the Earth's core Geophysical Journal - Royal Astronomical Society. 87: 669-678. DOI: 10.1111/J.1365-246X.1986.Tb06643.X |
0.615 |
|
1986 |
Bloxham J, Gubbins D. Geomagnetic field analysis - IV. Testing the frozen-flux hypothesis Geophysical Journal - Royal Astronomical Society. 84: 139-152. DOI: 10.1111/J.1365-246X.1986.Tb04349.X |
0.67 |
|
1986 |
Bloxham J. Models of the magnetic field at the core-mantle boundary for 1715, 1777, and 1842 Journal of Geophysical Research. 91: 13954. DOI: 10.1029/Jb091Ib14P13954 |
0.607 |
|
1985 |
Gubbins D, Bloxham J. Geomagnetic field analysis - III. Magnetic fields on the core- mantle boundary Geophysical Journal - Royal Astronomical Society. 80: 695-713. DOI: 10.1111/J.1365-246X.1985.Tb05119.X |
0.711 |
|
1985 |
Bloxham J, Gubbins D. The secular variation of Earth's magnetic field Nature. 317: 777-781. DOI: 10.1038/317777A0 |
0.752 |
|
Show low-probability matches. |