Scott Delp, Ph.D.
Affiliations: | Bioengineering | Stanford University, Palo Alto, CA |
Area:
neuromuscular biomechanicsWebsite:
http://nmbl.stanford.edu/people/Scott_Delp.htmGoogle:
"Scott Delp"Cross-listing: Neurotree - BME Tree
Children
Sign in to add traineeWendy Murray | grad student | Stanford (Neurotree) | |
Stephen J. Piazza | grad student | ||
James L. Patton | grad student | 1994-1998 | Northwestern (Neurotree) |
Deanna S. Asakawa | grad student | 2003 | Stanford (Neurotree) |
Ajit M. Chaudhari | grad student | 2000-2003 | Stanford |
Blake M. Ashby | grad student | 2004 | Stanford (Neurotree) |
Silvia S. Blemker | grad student | 2004 | Stanford (Neurotree) |
Saryn R. Goldberg | grad student | 2004 | Stanford |
Jill Higginson | grad student | 2000-2005 | Stanford |
Katherine Saul | grad student | 2000-2005 | Stanford |
Robert Anthony Siston | grad student | 2000-2005 | Stanford |
Vincent De Sapio | grad student | 2002-2007 | Stanford |
Christine E. Draper | grad student | 2008 | Stanford (Neurotree) |
Michael E. Llewellyn | grad student | 2009 | Stanford (Neurotree) |
Christopher Dembia | grad student | 2014-2020 | Stanford (Neurotree) |
Ilse Jonkers | post-doc | Stanford | |
Christopher J. Gorini | post-doc | 2013-2016 | Stanford (Neurotree) |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Smith AC, Laguna JM, Wesselink EO, et al. (2025) Leg Muscle Volume, Intramuscular Fat and Force Generation: Insights From a Computer-Vision Model and Fat-Water MRI. Journal of Cachexia, Sarcopenia and Muscle. 16: e13735 |
Werling K, Kaneda J, Tan T, et al. (2024) AddBiomechanics Dataset: Capturing the Physics of Human Motion at Scale. Computer Vision - Eccv ... : ... European Conference On Computer Vision : Proceedings. European Conference On Computer Vision. 15146: 490-508 |
Van Wouwe T, Hicks J, Delp S, et al. (2024) A simulation framework to determine optimal strength training and musculoskeletal geometry for sprinting and distance running. Plos Computational Biology. 20: e1011410 |
Clancy CE, Gatti AA, Ong CF, et al. (2023) Muscle-driven simulations and experimental data of cycling. Scientific Reports. 13: 21534 |
Lloyd DG, Jonkers I, Delp SL, et al. (2023) The History and Future of Neuromusculoskeletal Biomechanics. Journal of Applied Biomechanics. 39: 273-283 |
Stingel JP, Hicks JL, Uhlrich SD, et al. (2023) Simulating Muscle-Level Energetic Cost Savings When Humans Run with a Passive Assistive Device. Ieee Robotics and Automation Letters. 8: 6267-6274 |
Bianco NA, Collins SH, Liu K, et al. (2023) Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking. Plos Computational Biology. 19: e1010712 |
Stingel JP, Hicks JL, Uhlrich SD, et al. (2023) How Connecting the Legs with a Spring Improves Human Running Economy. Biorxiv : the Preprint Server For Biology |
Uhlrich SD, Jackson RW, Seth A, et al. (2022) Muscle coordination retraining inspired by musculoskeletal simulations reduces knee contact force. Scientific Reports. 12: 9842 |
Dembia CL, Bianco NA, Falisse A, et al. (2020) OpenSim Moco: Musculoskeletal optimal control. Plos Computational Biology. 16: e1008493 |