Year |
Citation |
Score |
2021 |
Huang P, Li Z. Partially penalized IFE methods and convergence analysis for elasticity interface problems Journal of Computational and Applied Mathematics. 382: 113059. DOI: 10.1016/J.Cam.2020.113059 |
0.476 |
|
2020 |
Tong F, Wang W, Feng X, Zhao J, Li Z. How to obtain an accurate gradient for interface problems Journal of Computational Physics. 405: 109070. DOI: 10.1016/J.Jcp.2019.109070 |
0.477 |
|
2019 |
Xiao X, Feng X, Li Z. A gradient recovery–based adaptive finite element method for convection‐diffusion‐reaction equations on surfaces International Journal For Numerical Methods in Engineering. 120: 901-917. DOI: 10.1002/Nme.6163 |
0.44 |
|
2018 |
Li Z. FROM IIM TO AUGMENTED IIM: A POWERFUL TOOL FOR COMPLEX PROBLEMS USING CARTESIAN MESHES Advanced Calculation and Analysis. 3: 1-6. DOI: 10.21065/2520-596x/3.1 |
0.439 |
|
2018 |
Li Z, Chen X, Zhang Z. On MultiScale ADI Methods for Parabolic PDEs with a Discontinuous Coefficient Multiscale Modeling & Simulation. 16: 1623-1647. DOI: 10.1137/17M1151985 |
0.417 |
|
2018 |
Chen X, Li Z, Álvarez JR. A direct IIM approach for two-phase Stokes equations with discontinuous viscosity on staggered grids Computers & Fluids. 172: 549-563. DOI: 10.1016/J.Compfluid.2018.03.038 |
0.5 |
|
2018 |
Li Z, Lai M, Peng X, Zhang Z. A least squares augmented immersed interface method for solving Navier–Stokes and Darcy coupling equations Computers & Fluids. 167: 384-399. DOI: 10.1016/J.Compfluid.2018.03.032 |
0.5 |
|
2018 |
Ji H, Chen J, Li Z. A high-order source removal finite element method for a class of elliptic interface problems Applied Numerical Mathematics. 130: 112-130. DOI: 10.1016/J.Apnum.2018.03.017 |
0.505 |
|
2018 |
Hu R, Li Z. Error analysis of the immersed interface method for Stokes equations with an interface Applied Mathematics Letters. 83: 207-211. DOI: 10.1016/J.Aml.2018.03.034 |
0.452 |
|
2018 |
Chen X, Feng X, Li Z. A direct method for accurate solution and gradient computations for elliptic interface problems Numerical Algorithms. 80: 709-740. DOI: 10.1007/S11075-018-0503-5 |
0.487 |
|
2017 |
Li Z, Ji H, Chen X. ACCURATE SOLUTION AND GRADIENT COMPUTATION FOR ELLIPTIC INTERFACE PROBLEMS WITH VARIABLE COEFFICIENTS. Siam Journal On Numerical Analysis. 55: 570-597. PMID 28983130 DOI: 10.1137/15M1040244 |
0.518 |
|
2017 |
Huang P, Li Z. A Uniformly Stable Nonconforming FEM Based on Weighted Interior Penalties for Darcy-Stokes-Brinkman Equations Numerical Mathematics: Theory, Methods and Applications. 10: 22-43. DOI: 10.4208/Nmtma.2017.M1610 |
0.481 |
|
2017 |
Yan J, Lai M, Li Z, Zhang Z. New Conservative Finite Volume Element Schemes for the Modified Regularized Long Wave Equation Advances in Applied Mathematics and Mechanics. 9: 250-271. DOI: 10.4208/Aamm.2014.M888 |
0.358 |
|
2017 |
Qin F, Wang Z, Ma Z, Li Z. Accurate gradient computations at interfaces using finite element methods International Journal of Applied Mathematics and Computer Science. 27: 527-537. DOI: 10.1515/Amcs-2017-0037 |
0.493 |
|
2017 |
Qin F, Chen J, Li Z, Cai M. A Cartesian grid nonconforming immersed finite element method for planar elasticity interface problems Computers & Mathematics With Applications. 73: 404-418. DOI: 10.1016/J.Camwa.2016.11.033 |
0.495 |
|
2017 |
Amat S, Li Z, Ruiz J. On an New Algorithm for Function Approximation with Full Accuracy in the Presence of Discontinuities Based on the Immersed Interface Method Journal of Scientific Computing. 75: 1500-1534. DOI: 10.1007/S10915-017-0596-3 |
0.305 |
|
2017 |
Li Z, Qin F. An Augmented Method for 4th Order PDEs with Discontinuous Coefficients Journal of Scientific Computing. 73: 968-979. DOI: 10.1007/S10915-017-0487-7 |
0.544 |
|
2016 |
Su X, Feng X, Li Z. Fourth-Order Compact Schemes for Helmholtz Equations with Piecewise Wave Numbers in the Polar Coordinates Journal of Computational Mathematics. 34: 499-510. DOI: 10.4208/Jcm.1604-M2015-0290 |
0.315 |
|
2016 |
Ji H, Chen J, Li Z. Augmented immersed finite element methods for some elliptic partial differential equations International Journal of Computer Mathematics. 93: 540-558. DOI: 10.1080/00207160.2015.1005010 |
0.541 |
|
2016 |
Ji H, Chen J, Li Z. A new augmented immersed finite element method without using SVD interpolations Numerical Algorithms. 71: 395-416. DOI: 10.1007/S11075-015-9999-0 |
0.538 |
|
2015 |
Li Z, Xiao L, Cai Q, Zhao H, Luo R. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions. Journal of Computational Physics. 297: 182-193. PMID 27087702 DOI: 10.1016/J.Jcp.2015.05.003 |
0.52 |
|
2015 |
Li Z, Wang L, Aspinwall E, Cooper R, Kuberry P, Sanders A, Zeng K. Some new analysis results for a class of interface problems. Mathematical Methods in the Applied Sciences. 38: 4530-4539. PMID 26819486 DOI: 10.1002/Mma.2865 |
0.494 |
|
2015 |
Xia J, Li Z, Ye X. Effective matrix-free preconditioning for the augmented immersed interface method Journal of Computational Physics. 303: 295-312. DOI: 10.1016/J.Jcp.2015.09.050 |
0.429 |
|
2015 |
Zhang Q, Ito K, Li Z, Zhang Z. Immersed finite elements for optimal control problems of elliptic PDEs with interfaces Journal of Computational Physics. 298: 305-319. DOI: 10.1016/J.Jcp.2015.05.050 |
0.464 |
|
2015 |
Zhu L, Zhang Z, Li Z. An immersed finite volume element method for 2D PDEs with discontinuous coefficients and non-homogeneous jump conditions Computers & Mathematics With Applications. 70: 89-103. DOI: 10.1016/J.Camwa.2015.04.012 |
0.473 |
|
2015 |
Ruiz Álvarez J, Li Z. The immersed interface method for axis-symmetric problems and application to the Hele–Shaw flow Applied Mathematics and Computation. 264: 179-197. DOI: 10.1016/J.Amc.2015.03.131 |
0.51 |
|
2015 |
Zhang Q, Li Z, Zhang Z. A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input Journal of Scientific Computing. 67: 262-280. DOI: 10.1007/S10915-015-0080-X |
0.462 |
|
2015 |
Li Z. An augmented Cartesian grid method for Stokes-Darcy fluid-structure interactions International Journal For Numerical Methods in Engineering. 106: 556-575. DOI: 10.1002/Nme.5131 |
0.492 |
|
2014 |
Wang Z, Li Z, Lubkin S. A Robin-Robin Domain Decomposition Method for a Stokes-Darcy Structure Interaction with a Locally Modified Mesh. Numerical Mathematics (Hong Kong, China). 7: 435-446. PMID 28983165 |
0.317 |
|
2014 |
Xiao L, Cai Q, Li Z, Zhao H, Luo R. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation. Chemical Physics Letters. 616: 67-74. PMID 25404761 DOI: 10.1016/J.Cplett.2014.10.033 |
0.363 |
|
2014 |
Wang Z, Li Z, Lubkin S. A Robin-Robin domain decomposition method for a stokes-darcy structure interaction with a locally modified mesh Numerical Mathematics. 7: 435-446. DOI: 10.4208/Nmtma.2014.1305Si |
0.423 |
|
2014 |
Xu JJ, Huang Y, Lai MC, Li Z. A coupled immersed interface and level set method for three-dimensional interfacial flows with insoluble surfactant Communications in Computational Physics. 15: 451-469. DOI: 10.4208/Cicp.241012.310513A |
0.483 |
|
2014 |
Li Z. On convergence of the immersed boundary method for elliptic interface problems Mathematics of Computation. 84: 1169-1188. DOI: 10.1090/S0025-5718-2014-02932-3 |
0.508 |
|
2014 |
Zeng Y, Chen J, Li Z. A parallel Robin–Robin domain decomposition method for H(div)-elliptic problems International Journal of Computer Mathematics. 92: 394-410. DOI: 10.1080/00207160.2014.892587 |
0.444 |
|
2014 |
Ji H, Chen J, Li Z. A Symmetric and Consistent Immersed Finite Element Method for Interface Problems Journal of Scientific Computing. 61: 533-557. DOI: 10.1007/S10915-014-9837-X |
0.434 |
|
2013 |
Wang C, Wang J, Cai Q, Li Z, Zhao HK, Luo R. Exploring accurate Poisson-Boltzmann methods for biomolecular simulations. Computational & Theoretical Chemistry. 1024: 34-44. PMID 24443709 DOI: 10.1016/J.Comptc.2013.09.021 |
0.465 |
|
2013 |
Li Z, Song P. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems. Computers & Structures. 122: 249-258. PMID 23794763 DOI: 10.1016/J.Compstruc.2013.03.013 |
0.477 |
|
2013 |
Liu X, Wang C, Wang J, Li Z, Zhao H, Luo R. Exploring a charge-central strategy in the solution of Poisson's equation for biomolecular applications. Physical Chemistry Chemical Physics : Pccp. 15: 129-41. PMID 23147243 DOI: 10.1039/C2Cp41894K |
0.464 |
|
2013 |
Wang Q, Zhang Z, Li Z. A Fourier finite volume element method for solving two-dimensional quasi-geostrophic equations on a sphere Applied Numerical Mathematics. 71: 1-13. DOI: 10.1016/J.Apnum.2013.03.007 |
0.498 |
|
2012 |
Ito K, Li Z, Qiao Z. The Sensitivity Analysis for the Flow Past Obstacles Problem with Respect to the Reynolds Number. Advances in Applied Mathematics and Mechanics. 4: 21-35. PMID 24910780 DOI: 10.4208/Aamm.11-M1110 |
0.448 |
|
2012 |
Hou S, Li Z, Wang L, Wang W. A Numerical Method for Solving Elasticity Equations with Interfaces. Communications in Computational Physics. 12: 595-612. PMID 22707984 DOI: 10.4208/Cicp.160910.130711S |
0.548 |
|
2012 |
Wan X, Li Z. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES. Discrete and Continuous Dynamical Systems. Series B. 17: 1155-1174. PMID 22701346 DOI: 10.3934/Dcdsb.2012.17.1155 |
0.655 |
|
2012 |
Li Z, Song P. An Adaptive Mesh Refinement Strategy for Immersed Boundary/Interface Methods. Communications in Computational Physics. 12: 515-527. PMID 22670155 DOI: 10.4208/Cicp.070211.150811S |
0.513 |
|
2012 |
Hao J, Li Z, Lubkin SR. AN AUGMENTED IMMERSED INTERFACE METHOD FOR MOVING STRUCTURES WITH MASS. Discrete and Continuous Dynamical Systems. Series B. 17: 1175-1184. PMID 22639553 DOI: 10.3934/Dcdsb.2012.17.1175 |
0.426 |
|
2012 |
Caraus I, Li Z. Numerical Solutions of the System of Singular Integro-Differential Equations in Classical Hölder Spaces Advances in Applied Mathematics and Mechanics. 4: 737-750. DOI: 10.1017/S2070073300001843 |
0.461 |
|
2011 |
Xie H, Li Z, Qiao Z. A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS. International Journal of Numerical Analysis and Modeling. 8: 189-200. PMID 24058368 |
0.353 |
|
2011 |
Li Z, Lai MC. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows. East Asian Journal On Applied Mathematics. 1: 155-171. PMID 23795308 DOI: 10.4208/Eajam.030510.250910A |
0.529 |
|
2011 |
Xu J, Li Z, Lowengrub J, Zhao H. Numerical Study of Surfactant-Laden Drop-Drop Interactions Communications in Computational Physics. 10: 453-473. DOI: 10.4208/Cicp.090310.020610A |
0.341 |
|
2010 |
Li Z, Lai M, He G, Zhao H. An augmented method for free boundary problems with moving contact lines Computers & Fluids. 39: 1033-1040. DOI: 10.1016/J.Compfluid.2010.01.013 |
0.487 |
|
2010 |
Ruiz Álvarez J, Chen J, Li Z. The IIM in polar coordinates and its application to electro capacitance tomography problems Numerical Algorithms. 57: 405-423. DOI: 10.1007/S11075-010-9436-3 |
0.442 |
|
2010 |
Feng X, Li Z. Simplified immersed interface methods for elliptic interface problems with straight interfaces Numerical Methods For Partial Differential Equations. 28: 188-203. DOI: 10.1002/Num.20614 |
0.419 |
|
2009 |
Wang J, Cai Q, Li ZL, Zhao HK, Luo R. Achieving Energy Conservation in Poisson-Boltzmann Molecular Dynamics: Accuracy and Precision with Finite-Difference Algorithms. Chemical Physics Letters. 468: 112-118. PMID 20098487 DOI: 10.1016/J.Cplett.2008.12.049 |
0.399 |
|
2009 |
Yang X, Zhang X, Li Z, He G. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations Journal of Computational Physics. 228: 7821-7836. DOI: 10.1016/J.Jcp.2009.07.023 |
0.414 |
|
2009 |
Ito K, Lai M, Li Z. A well-conditioned augmented system for solving Navier–Stokes equations in irregular domains Journal of Computational Physics. 228: 2616-2628. DOI: 10.1016/J.Jcp.2008.12.028 |
0.489 |
|
2009 |
Wang F, Chen J, Xu W, Li Z. An additive Schwarz preconditioner for the mortar-type rotated FEM for elliptic problems with discontinuous coefficients Applied Numerical Mathematics. 59: 1657-1667. DOI: 10.1016/J.Apnum.2008.11.006 |
0.461 |
|
2008 |
Wan X, Li Z, Lubkin SR. Mechanics of mesenchymal contribution to clefting force in branching morphogenesis. Biomechanics and Modeling in Mechanobiology. 7: 417-26. PMID 17901991 DOI: 10.1007/S10237-007-0105-Y |
0.489 |
|
2008 |
Beale JT, Chopp D, LeVeque R, Li Z. Correction to the article ``A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources'' by Vaughan et al. Communications in Applied Mathematics and Computational Science. 3: 95-101. DOI: 10.2140/camcos.2008.3.95 |
0.324 |
|
2008 |
Gong Y, Li B, Li Z. Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions Siam Journal On Numerical Analysis. 46: 472-495. DOI: 10.1137/060666482 |
0.582 |
|
2008 |
Tan Z, Le D, Li Z, Lim K, Khoo B. An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane Journal of Computational Physics. 227: 9955-9983. DOI: 10.1016/J.Jcp.2008.08.013 |
0.434 |
|
2008 |
Rutka V, Li Z. An explicit jump immersed interface method for two-phase Navier–Stokes equations with interfaces Computer Methods in Applied Mechanics and Engineering. 197: 2317-2328. DOI: 10.1016/J.Cma.2007.12.016 |
0.515 |
|
2007 |
Li Z, Ito K, Lai M. An augmented approach for Stokes equations with a discontinuous viscosity and singular forces Computers & Fluids. 36: 622-635. DOI: 10.1016/J.Compfluid.2006.03.003 |
0.531 |
|
2007 |
Chen G, Li Z, Lin P. A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow Advances in Computational Mathematics. 29: 113-133. DOI: 10.1007/S10444-007-9043-6 |
0.583 |
|
2007 |
Li Z, Lai M, Ito K. An immersed interface method for the Navier-Stokes equations on irregular domains Pamm. 7: 1025401-1025402. DOI: 10.1002/Pamm.200700758 |
0.494 |
|
2006 |
Ito K, Li Z, Wan X. Pressure Jump Conditions for Stokes Equations with Discontinuous Viscosity in 2D and 3D Methods and Applications of Analysis. 13: 199-214. DOI: 10.4310/Maa.2006.V13.N2.A6 |
0.511 |
|
2006 |
Xu J, Li Z, Lowengrub J, Zhao H. A level-set method for interfacial flows with surfactant Journal of Computational Physics. 212: 590-616. DOI: 10.1016/J.Jcp.2005.07.016 |
0.505 |
|
2006 |
Lai M, Li Z, Lin X. Fast solvers for 3D Poisson equations involving interfaces in a finite or the infinite domain Journal of Computational and Applied Mathematics. 191: 106-125. DOI: 10.1016/J.Cam.2005.04.025 |
0.479 |
|
2006 |
Ito K, Li Z. Interface conditions for Stokes equations with a discontinuous viscosity and surface sources Applied Mathematics Letters. 19: 229-234. DOI: 10.1016/J.Aml.2005.02.041 |
0.487 |
|
2005 |
Ito K, Li Z, Kyei Y. Higher-order, cartesian grid based finite difference schemes for elliptic equations on irregular domains Siam Journal On Scientific Computing. 27: 346-367. DOI: 10.1137/03060120X |
0.526 |
|
2005 |
Li Z, Pao CV, Qiao Z. A Finite Difference Method and Analysis for 2D Nonlinear Poisson–Boltzmann Equations Journal of Scientific Computing. 30: 61-81. DOI: 10.1007/S10915-005-9019-Y |
0.51 |
|
2004 |
Zolotarevskii VA, Li Z, Caraus I. Approximate solution of singular integro-differential equations by reduction over Faber-Laurent polynomials Differential Equations. 40: 1764-1769. DOI: 10.1007/S10625-005-0108-3 |
0.375 |
|
2004 |
Li Z, Lin T, Lin Y, Rogers RC. An immersed finite element space and its approximation capability Numerical Methods For Partial Differential Equations. 20: 338-367. DOI: 10.1002/Num.10092 |
0.407 |
|
2003 |
Li Z, Lin X, Torres M, Zhao H. Generalized Snell's Law for Weighted Minimal Surface in Heterogeneous Media Methods and Applications of Analysis. 10: 199-214. DOI: 10.4310/Maa.2003.V10.N2.A3 |
0.346 |
|
2003 |
Li Z, Wang C. A Fast Finite Differenc Method For Solving Navier-Stokes Equations on Irregular Domains Communications in Mathematical Sciences. 1: 180-196. DOI: 10.4310/CMS.2003.v1.n1.a11 |
0.37 |
|
2003 |
Li Z. AN OVERVIEW OF THE IMMERSED INTERFACE METHOD AND ITS APPLICATIONS Taiwanese Journal of Mathematics. 7: 1-49. DOI: 10.11650/Twjm/1500407515 |
0.485 |
|
2003 |
Li Z, Wang W, Chern I, Lai M. New Formulations for Interface Problems in Polar Coordinates Siam Journal On Scientific Computing. 25: 224-245. DOI: 10.1137/S106482750139618X |
0.48 |
|
2003 |
Ito K, Li Z. Journal of Scientific Computing. 19: 253-266. DOI: 10.1023/A:1025356025745 |
0.475 |
|
2003 |
Deng S, Ito K, Li Z. Three-dimensional elliptic solvers for interface problems and applications Journal of Computational Physics. 184: 215-243. DOI: 10.1016/S0021-9991(02)00028-1 |
0.518 |
|
2003 |
Li Z, Lin T, Wu X. New Cartesian grid methods for interface problems using the finite element formulation Numerische Mathematik. 96: 61-98. DOI: 10.1007/S00211-003-0473-X |
0.483 |
|
2002 |
Adams L, Li Z. The Immersed Interface/Multigrid Methods for Interface Problems Siam Journal On Scientific Computing. 24: 463-479. DOI: 10.1137/S1064827501389849 |
0.499 |
|
2002 |
Hunter JK, Li Z, Zhao H. Reactive autophobic spreading of drops Journal of Computational Physics. 183: 335-366. DOI: 10.1006/Jcph.2002.7168 |
0.453 |
|
2001 |
Li Z, Ito K. Maximum Principle Preserving Schemes for Interface Problems with Discontinuous Coefficients Siam Journal On Scientific Computing. 23: 339-361. DOI: 10.1137/S1064827500370160 |
0.51 |
|
2001 |
Ito K, Kunisch K, Li Z. Level-set function approach to an inverse interface problem Inverse Problems. 17: 1225-1242. DOI: 10.1088/0266-5611/17/5/301 |
0.433 |
|
2001 |
Lai M, Li Z. A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an immersed moving membrane Applied Mathematics Letters. 14: 149-154. DOI: 10.1016/S0893-9659(00)00127-0 |
0.443 |
|
2001 |
Li Z, Lai M. The Immersed Interface Method for the Navier–Stokes Equations with Singular Forces Journal of Computational Physics. 171: 822-842. DOI: 10.1006/Jcph.2001.6813 |
0.532 |
|
2001 |
Li Z, Lubkin SR. Numerical analysis of interfacial two-dimensional Stokes flow with discontinuous viscosity and variable surface tension International Journal For Numerical Methods in Fluids. 37: 525-540. DOI: 10.1002/Fld.185 |
0.447 |
|
1999 |
Ewing RE, Li Z, Lin T, Lin Y. The immersed finite volume element methods for the elliptic interface problems Mathematics and Computers in Simulation. 50: 63-76. DOI: 10.1016/S0378-4754(99)00061-0 |
0.468 |
|
1999 |
Li Z, Zhao H, Gao H. A Numerical Study of Electro-migration Voiding by Evolving Level Set Functions on a Fixed Cartesian Grid Journal of Computational Physics. 152: 281-304. DOI: 10.1006/Jcph.1999.6249 |
0.448 |
|
1998 |
Li Z. A Fast Iterative Algorithm for Elliptic Interface Problems Siam Journal On Numerical Analysis. 35: 230-254. DOI: 10.1137/S0036142995291329 |
0.48 |
|
1998 |
Li Z, Wang D, Zou J. Theoretical and numerical analysis on a thermo-elastic system with discontinuities Journal of Computational and Applied Mathematics. 92: 37-58. DOI: 10.1016/S0377-0427(98)00044-2 |
0.441 |
|
1998 |
Li Z. The immersed interface method using a finite element formulation Applied Numerical Mathematics. 27: 253-267. DOI: 10.1016/S0168-9274(98)00015-4 |
0.527 |
|
1997 |
Leveque RJ, Li Z. Immersed interface methods for Stokes flow with elastic boundaries or surface tension Siam Journal On Scientific Computing. 18: 709-735. DOI: 10.1137/S1064827595282532 |
0.525 |
|
1997 |
Hou TY, Li Z, Osher S, Zhao H. A Hybrid Method for Moving Interface Problems with Application to the Hele–Shaw Flow Journal of Computational Physics. 134: 236-252. DOI: 10.1006/Jcph.1997.5689 |
0.485 |
|
1996 |
Li Z. A note on immersed interface method for three-dimensional elliptic equations Computers & Mathematics With Applications. 31: 9-17. DOI: 10.1016/0898-1221(95)00202-2 |
0.361 |
|
1994 |
Leveque RJ, Li Z. Immersed interface method for elliptic equations with discontinuous coefficients and singular sources Siam Journal On Numerical Analysis. 31: 1019-1044. DOI: 10.1137/0731054 |
0.389 |
|
Show low-probability matches. |