Nigel Scrutton - Publications

Affiliations: 
University of Leiceste 

128 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Taylor A, Zhang S, Johannissen LO, Sakuma M, Phillips RS, Green AP, Hay S, Heyes DJ, Scrutton NS. Mechanistic implications of the ternary complex structural models for the photoenzyme protochlorophyllide oxidoreductase. The Febs Journal. PMID 38060334 DOI: 10.1111/febs.17025  0.385
2023 Faulkner M, Hoeven R, Kelly PP, Sun Y, Park H, Liu LN, Toogood HS, Scrutton NS. Chemoautotrophic production of gaseous hydrocarbons, bioplastics and osmolytes by a novel Halomonas species. Biotechnology For Biofuels and Bioproducts. 16: 152. PMID 37821908 DOI: 10.1186/s13068-023-02404-1  0.712
2023 Zhao J, Zhuo Y, Diaz DE, Shanmugam M, Telfer AJ, Lindley PJ, Kracher D, Hayashi T, Seibt LS, Hardy FJ, Manners O, Hedison TM, Hollywood KA, Spiess R, Cain KM, ... ... Scrutton NS, et al. Mapping the Initial Stages of a Protective Pathway that Enhances Catalytic Turnover by a Lytic Polysaccharide Monooxygenase. Journal of the American Chemical Society. PMID 37688545 DOI: 10.1021/jacs.3c06607  0.362
2023 Scrutton NS. Unravelling the complexity of enzyme catalysis. The Febs Journal. 290: 2204-2207. PMID 37132524 DOI: 10.1111/febs.16796  0.343
2022 Barker RD, Yu Y, De Maria L, Johannissen LO, Scrutton NS. Mechanism of Action of Flavin-Dependent Halogenases. Acs Catalysis. 12: 15352-15360. PMID 36570077 DOI: 10.1021/acscatal.2c05231  0.309
2022 Johannissen LO, Taylor A, Hardman SJO, Heyes DJ, Scrutton NS, Hay S. How Photoactivation Triggers Protochlorophyllide Reduction: Computational Evidence of a Stepwise Hydride Transfer during Chlorophyll Biosynthesis. Acs Catalysis. 12: 4141-4148. PMID 35574213 DOI: 10.1021/acscatal.2c00866  0.319
2022 Leferink NGH, Escorcia AM, Ouwersloot BR, Johanissen LO, Hay S, van der Kamp MW, Scrutton N. Molecular determinants for carbocation cyclisation in bacterial monoterpene synthases. Chembiochem : a European Journal of Chemical Biology. PMID 35005823 DOI: 10.1002/cbic.202100688  0.344
2020 Trisrivirat D, Hughes JMX, Hoeven R, Faulkner M, Toogood H, Chaiyen P, Scrutton NS. Promoter engineering for microbial bio-alkane gas production. Synthetic Biology (Oxford, England). 5: ysaa022. PMID 33263086 DOI: 10.1093/synbio/ysaa022  0.733
2020 Heyes DJ, Lakavath B, Hardman SJO, Sakuma M, Hedison TM, Scrutton NS. Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase. Acs Catalysis. 10: 6691-6696. PMID 32905273 DOI: 10.1021/acscatal.0c01684  0.319
2020 Amer M, Hoeven R, Kelly P, Faulkner M, Smith MH, Toogood HS, Scrutton NS. Renewable and tuneable bio-LPG blends derived from amino acids. Biotechnology For Biofuels. 13: 125. PMID 32684978 DOI: 10.1186/S13068-020-01766-0  0.735
2020 Lakavath B, Hedison TM, Heyes DJ, Shanmugam M, Sakuma M, Hoeven R, Tilakaratna V, Scrutton NS. Radical-based photoinactivation of fatty acid photodecarboxylases. Analytical Biochemistry. 600: 113749. PMID 32348726 DOI: 10.1016/J.Ab.2020.113749  0.772
2020 Amer M, Wojcik EZ, Sun C, Hoeven R, Hughes JMX, Faulkner M, Yunus IS, Tait S, Johannissen LO, Hardman SJO, Heyes DJ, Chen G, Smith MH, Jones PR, Toogood HS, ... Scrutton NS, et al. Low carbon strategies for sustainable bio-alkane gas production and renewable energy Energy and Environmental Science. 13: 1818-1831. DOI: 10.1039/D0Ee00095G  0.719
2019 Hedison TM, Shenoy RT, Iorgu AI, Heyes DJ, Fisher K, Wright GSA, Hay S, Eady RR, Antonyuk SV, Hasnain SS, Scrutton NS. Unexpected Roles of a Tether Harboring a Tyrosine Gatekeeper Residue in Modular Nitrite Reductase Catalysis. Acs Catalysis. 9: 6087-6099. PMID 32051772 DOI: 10.1021/Acscatal.9B01266  0.348
2019 Zhang S, Heyes DJ, Feng L, Sun W, Johannissen LO, Liu H, Levy CW, Li X, Yang J, Yu X, Lin M, Hardman SJO, Hoeven R, Sakuma M, Hay S, ... ... Scrutton NS, et al. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature. PMID 31645759 DOI: 10.1038/S41586-019-1685-2  0.774
2019 Kearsey LJ, Prandi N, Karuppiah V, Yan C, Leys D, Toogood H, Takano E, Scrutton NS. Structure of the Cannabis sativa olivetol-producing enzyme reveals cyclization plasticity in Type III polyketide synthases. The Febs Journal. PMID 31605668 DOI: 10.1111/febs.15089  0.393
2019 Johannissen LO, Iorgu AI, Scrutton NS, Hay S. What are the signatures of tunnelling in enzyme-catalysed reactions? Faraday Discussions. 221: 367-378. PMID 31544181 DOI: 10.1039/C9Fd00044E  0.398
2019 Leferink NGH, Ranaghan KE, Karuppiah V, Currin A, van der Kamp MW, Mulholland AJ, Scrutton NS. Experiment and Simulation Reveal How Mutations in Functional Plasticity Regions Guide Plant Monoterpene Synthase Product Outcome. Acs Catalysis. 8: 3780-3791. PMID 31157124 DOI: 10.1021/acscatal.8b00692  0.307
2019 Iorgu AI, Cliff MJ, Waltho JP, Scrutton NS, Hay S. Isotopically labeled flavoenzymes and their uses in probing reaction mechanisms. Methods in Enzymology. 620: 145-166. PMID 31072485 DOI: 10.1016/Bs.Mie.2019.03.009  0.301
2019 Iorgu AI, Hedison TM, Hay S, Scrutton NS. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases. The Febs Journal. 286: 3117-3128. PMID 31033202 DOI: 10.1111/febs.14862  0.37
2019 Sutcliffe MJ, Scrutton NS. Enzymology takes a quantum leap forward. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 358: 367-386. PMID 20396604 DOI: 10.1098/rsta.2000.0536  0.346
2018 Currin A, Dunstan MS, Johannissen LO, Hollywood KA, Vinaixa M, Jervis AJ, Swainston N, Rattray NJW, Gardiner JM, Kell DB, Takano E, Toogood HS, Scrutton NS. Engineering the "Missing Link" in Biosynthetic (-)-Menthol Production: Bacterial Isopulegone Isomerase. Acs Catalysis. 8: 2012-2020. PMID 29750129 DOI: 10.1021/Acscatal.7B04115  0.396
2017 Karuppiah V, Ranaghan KE, Leferink NGH, Johannissen LO, Shanmugam M, Ní Cheallaigh A, Bennett NJ, Kearsey LJ, Takano E, Gardiner JM, van der Kamp MW, Hay S, Mulholland AJ, Leys D, Scrutton NS. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase. Acs Catalysis. 7: 6268-6282. PMID 28966840 DOI: 10.1021/Acscatal.7B01924  0.35
2017 Swainston N, Batista-Navarro R, Carbonell P, Dobson PD, Dunstan M, Jervis AJ, Vinaixa M, Williams AR, Ananiadou S, Faulon JL, Mendes P, Kell DB, Scrutton NS, Breitling R. biochem4j: Integrated and extensible biochemical knowledge through graph databases. Plos One. 12: e0179130. PMID 28708831 DOI: 10.1371/Journal.Pone.0179130  0.311
2017 Waller J, Toogood HS, Karuppiah V, Rattray NJW, Mansell DJ, Leys D, Gardiner JM, Fryszkowska A, Ahmed ST, Bandichhor R, Reddy GP, Scrutton NS. Structural insights into the ene-reductase synthesis of profens. Organic & Biomolecular Chemistry. PMID 28485453 DOI: 10.1039/C7Ob00163K  0.481
2016 Longbotham JE, Hardman SJ, Görlich S, Scrutton NS, Hay S. Untangling heavy protein and cofactor isotope effects on enzyme- catalyzed hydride transfer. Journal of the American Chemical Society. PMID 27676389 DOI: 10.1021/jacs.6b07852  0.346
2016 Lygidakis A, Karuppiah V, Hoeven R, Ní Cheallaigh A, Leys D, Gardiner JM, Toogood HS, Scrutton NS. Pinpointing a Mechanistic Switch Between Ketoreduction and "Ene" Reduction in Short-Chain Dehydrogenases/Reductases. Angewandte Chemie (Weinheim An Der Bergstrasse, Germany). 128: 9748-9752. PMID 27587903 DOI: 10.1002/ange.201603785  0.781
2016 Hedison TM, Leferink NG, Hay S, Scrutton NS. Correlating Calmodulin Landscapes with Chemical Catalysis in Neuronal Nitric Oxide Synthase using Time-Resolved FRET and a 5-Deazaflavin Thermodynamic Trap. Acs Catalysis. 6: 5170-5180. PMID 27563493 DOI: 10.1021/acscatal.6b01280  0.317
2016 Lygidakis A, Karuppiah V, Hoeven R, Ní Cheallaigh A, Leys D, Gardiner JM, Toogood HS, Scrutton NS. Pinpointing a Mechanistic Switch Between Ketoreduction and "Ene" Reduction in Short-Chain Dehydrogenases/Reductases. Angewandte Chemie (International Ed. in English). PMID 27411040 DOI: 10.1002/Anie.201603785  0.781
2016 Menon BR, Hardman SJ, Scrutton NS, Heyes DJ. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). Journal of Photochemistry and Photobiology. B, Biology. 161: 236-43. PMID 27285815 DOI: 10.1016/j.jphotobiol.2016.05.029  0.388
2016 Hoeven R, Hardman SJ, Heyes DJ, Scrutton NS. Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. Biochemistry. 55: 903-13. PMID 26807652 DOI: 10.1021/Acs.Biochem.5B01355  0.771
2015 Peers MK, Toogood HS, Heyes DJ, Mansell D, Coe BJ, Scrutton NS. Light-driven biocatalytic reduction of α,β-unsaturated compounds by ene reductases employing transition metal complexes as photosensitizers. Catalysis Science & Technology. 6: 169-177. PMID 27019691 DOI: 10.1039/c5cy01642h  0.306
2015 Longbotham JE, Levy C, Johannissen LO, Tarhonskaya H, Jiang S, Loenarz C, Flashman E, Hay S, Schofield CJ, Scrutton NS. Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase. Biochemistry. 54: 6093-105. PMID 26368022 DOI: 10.1021/Acs.Biochem.5B00789  0.322
2015 Payne KA, White MD, Fisher K, Khara B, Bailey SS, Parker D, Rattray NJ, Trivedi DK, Goodacre R, Beveridge R, Barran P, Rigby SE, Scrutton NS, Hay S, Leys D. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature. 522: 497-501. PMID 26083754 DOI: 10.1038/Nature14560  0.346
2015 Hoeven R, Heyes DJ, Hay S, Scrutton NS. Does the pressure dependence of kinetic isotope effects report usefully on dynamics in enzyme H-transfer reactions? The Febs Journal. 282: 3243-55. PMID 25581554 DOI: 10.1111/Febs.13193  0.734
2015 Heyes DJ, Hardman SJ, Hedison TM, Hoeven R, Greetham GM, Towrie M, Scrutton NS. Excited-state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Angewandte Chemie (International Ed. in English). 54: 1512-5. PMID 25488797 DOI: 10.1002/Anie.201409881  0.761
2015 Radford SE, Scrutton NS. Professor Richard Nelson Perham, FRS, FMedSci The Biochemist. 37: 58-59. DOI: 10.1042/bio03703058  0.356
2014 Pang J, Scrutton NS, Sutcliffe MJ. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase. Chemistry (Weinheim An Der Bergstrasse, Germany). 20: 11390-401. PMID 25048616 DOI: 10.1002/chem.201402759  0.314
2014 Leferink NG, Antonyuk SV, Houwman JA, Scrutton NS, Eady RR, Hasnain SS. Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase. Nature Communications. 5: 4395. PMID 25022223 DOI: 10.1038/ncomms5395  0.398
2014 Pudney CR, Hay S, Scrutton NS. Practical aspects on the use of kinetic isotope effects as probes of flavoprotein enzyme mechanisms. Methods in Molecular Biology (Clifton, N.J.). 1146: 161-75. PMID 24764092 DOI: 10.1007/978-1-4939-0452-5_8  0.328
2014 Hernandez-Ortega A, Quesne MG, Bui S, Heuts DP, Steiner RA, Heyes DJ, de Visser SP, Scrutton NS. Origin of the proton-transfer step in the cofactor-free (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase: effect of the basicity of an active site His residue. The Journal of Biological Chemistry. 289: 8620-32. PMID 24482238 DOI: 10.1074/Jbc.M113.543033  0.316
2013 Mansell DJ, Toogood HS, Waller J, Hughes JM, Levy CW, Gardiner JM, Scrutton NS. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from Nicotiana tabacum. Acs Catalysis. 3: 370-379. PMID 27547488 DOI: 10.1021/Cs300709M  0.371
2013 Jones AR, Levy C, Hay S, Scrutton NS. Relating localized protein motions to the reaction coordinate in coenzyme B₁₂-dependent enzymes. The Febs Journal. 280: 2997-3008. PMID 23462350 DOI: 10.1111/febs.12223  0.336
2013 Fisher K, Mohr S, Mansell D, Goddard NJ, Fielden PR, Scrutton NS. Electro-enzymatic viologen-mediated substrate reduction using pentaerythritol tetranitrate reductase and a parallel, segmented fluid flow system Catalysis Science & Technology. 3: 1505-1511. DOI: 10.1039/C3Cy20720J  0.355
2012 Scrutton NS, Groot ML, Heyes DJ. Excited state dynamics and catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase Physical Chemistry Chemical Physics. 14: 8818-8824. PMID 22419074 DOI: 10.1039/C2Cp23789J  0.316
2011 Meints CE, Gustafsson FS, Scrutton NS, Wolthers KR. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase. Biochemistry. 50: 11131-42. PMID 22097960 DOI: 10.1021/bi2012228  0.313
2011 Makins C, Miros FN, Scrutton NS, Wolthers KR. Role of histidine 225 in adenosylcobalamin-dependent ornithine 4,5-aminomutase. Bioorganic Chemistry. 40: 39-47. PMID 21899873 DOI: 10.1016/j.bioorg.2011.08.003  0.331
2011 Toogood HS, Fryszkowska A, Hulley M, Sakuma M, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity. Chembiochem : a European Journal of Chemical Biology. 12: 738-49. PMID 21374779 DOI: 10.1002/Cbic.201000662  0.313
2011 Heyes DJ, Levy C, Sakuma M, Robertson DL, Scrutton NS. A twin-track approach has optimized proton and hydride transfer by dynamically coupled tunneling during the evolution of protochlorophyllide oxidoreductase. The Journal of Biological Chemistry. 286: 11849-54. PMID 21317291 DOI: 10.1074/jbc.M111.219626  0.331
2011 Fryszkowska A, Toogood H, Sakuma M, Stephens GM, Gardiner JM, Scrutton NS. Active site modifications in pentaerythritol tetranitrate reductase can lead to improved product enantiopurity, decreased by-product formation and altered stereochemical outcome in reactions with α,β-unsaturated nitroolefins Catalysis Science and Technology. 1: 948-957. DOI: 10.1039/C0Cy00092B  0.334
2010 Hulley ME, Toogood HS, Fryszkowska A, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic kinetic screening of site-saturated libraries. Chembiochem : a European Journal of Chemical Biology. 11: 2433-47. PMID 21064170 DOI: 10.1002/Cbic.201000527  0.366
2010 Adalbjörnsson BV, Toogood HS, Fryszkowska A, Pudney CR, Jowitt TA, Leys D, Scrutton NS. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme. Chembiochem : a European Journal of Chemical Biology. 11: 197-207. PMID 19943268 DOI: 10.1002/cbic.200900570  0.341
2010 Menon BR, Davison PA, Hunter CN, Scrutton NS, Heyes DJ. Mutagenesis alters the catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. The Journal of Biological Chemistry. 285: 2113-9. PMID 19850924 DOI: 10.1074/jbc.M109.071522  0.384
2010 Toogood HS, Gardiner JM, Scrutton NS. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases Chemcatchem. 2: 892-914. DOI: 10.1002/Cctc.201000094  0.324
2009 Heyes DJ, Levy C, Lafite P, Roberts IS, Goldrick M, Stachulski AV, Rossington SB, Stanford D, Rigby SE, Scrutton NS, Leys D. Structure-based mechanism of CMP-2-keto-3-deoxymanno-octulonic acid synthetase: convergent evolution of a sugar-activating enzyme with DNA/RNA polymerases. The Journal of Biological Chemistry. 284: 35514-23. PMID 19815542 DOI: 10.1074/jbc.M109.056630  0.319
2009 Pudney CR, Hay S, Scrutton NS. Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase. The Febs Journal. 276: 4780-9. PMID 19664062 DOI: 10.1111/j.1742-4658.2009.07179.x  0.37
2009 Menon BR, Waltho JP, Scrutton NS, Heyes DJ. Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase. The Journal of Biological Chemistry. 284: 18160-6. PMID 19439417 DOI: 10.1074/Jbc.M109.020719  0.418
2009 Heuts DP, Scrutton NS, McIntire WS, Fraaije MW. What's in a covalent bond? On the role and formation of covalently bound flavin cofactors. The Febs Journal. 276: 3405-27. PMID 19438712 DOI: 10.1111/j.1742-4658.2009.07053.x  0.323
2009 Pudney CR, McGrory T, Lafite P, Pang J, Hay S, Leys D, Sutcliffe MJ, Scrutton NS. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure. Chembiochem : a European Journal of Chemical Biology. 10: 1379-84. PMID 19405065 DOI: 10.1002/cbic.200900071  0.326
2009 Heyes DJ, Scrutton NS. Conformational changes in the catalytic cycle of protochlorophyllide oxidoreductase: what lessons can be learnt from dihydrofolate reductase? Biochemical Society Transactions. 37: 354-7. PMID 19290861 DOI: 10.1042/BST0370354  0.367
2009 Munro AW, Scrutton NS. Enzyme mechanisms: fast reaction and computational approaches. Biochemical Society Transactions. 37: 333-5. PMID 19290857 DOI: 10.1042/BST0370333  0.316
2008 Heyes DJ, Menon BR, Sakuma M, Scrutton NS. Conformational events during ternary enzyme-substrate complex formation are rate limiting in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase. Biochemistry. 47: 10991-8. PMID 18798649 DOI: 10.1021/bi801521c  0.374
2008 Dunn RV, Marshall KR, Munro AW, Scrutton NS. The pH dependence of kinetic isotope effects in monoamine oxidase A indicates stabilization of the neutral amine in the enzyme-substrate complex Febs Journal. 275: 3850-3858. PMID 18573102 DOI: 10.1111/j.1742-4658.2008.06532.x  0.338
2008 Burgess SG, Messiha HL, Katona G, Rigby SE, Leys D, Scrutton NS. Probing the dynamic interface between trimethylamine dehydrogenase (TMADH) and electron transferring flavoprotein (ETF) in the TMADH-2ETF complex: role of the Arg-alpha237 (ETF) and Tyr-442 (TMADH) residue pair. Biochemistry. 47: 5168-81. PMID 18407658 DOI: 10.1021/bi800127d  0.591
2008 Hothi P, Lee M, Cullis PM, Leys D, Scrutton NS. Catalysis by the Isolated Tryptophan Tryptophylquinone-Containing Subunit of Aromatic Amine Dehydrogenase Is Distinct from Native Enzyme and Synthetic Model Compounds and Allows Further Probing of TTQ Mechanism† Biochemistry. 47: 183-194. PMID 18052255 DOI: 10.1021/Bi701690U  0.354
2007 Pudney CR, Hay S, Pang J, Costello C, Leys D, Sutcliffe MJ, Scrutton NS. Mutagenesis of morphinone reductase induces multiple reactive configurations and identifies potential ambiguity in kinetic analysis of enzyme tunneling mechanisms. Journal of the American Chemical Society. 129: 13949-56. PMID 17939663 DOI: 10.1021/JA074463H  0.336
2007 Monaghan PJ, Leys D, Scrutton NS. Mechanistic aspects and redox properties of hyperthermophilic L-proline dehydrogenase from Pyrococcus furiosus related to dimethylglycine dehydrogenase/oxidase. The Febs Journal. 274: 2070-87. PMID 17371548 DOI: 10.1111/j.1742-4658.2007.05750.x  0.339
2006 Sutcliffe MJ, Scrutton NS. Computational studies of enzyme mechanism: linking theory with experiment in the analysis of enzymic H-tunnelling. Physical Chemistry Chemical Physics : Pccp. 8: 4510-6. PMID 17047748 DOI: 10.1039/B609622K  0.306
2006 Basran J, Fullerton S, Leys D, Scrutton NS. Mechanism of FAD reduction and role of active site residues His-225 and Tyr-259 in Arthrobacter globiformis dimethylglycine oxidase: analysis of mutant structure and catalytic function. Biochemistry. 45: 11151-61. PMID 16964976 DOI: 10.1021/BI061094D  0.442
2006 Combe JP, Basran J, Hothi P, Leys D, Rigby SE, Munro AW, Scrutton NS. Lys-D48 is required for charge stabilization, rapid flavin reduction, and internal electron transfer in the catalytic cycle of dihydroorotate dehydrogenase B of Lactococcus lactis. The Journal of Biological Chemistry. 281: 17977-88. PMID 16624811 DOI: 10.1074/jbc.M601417200  0.334
2006 Polticelli F, Basran J, Faso C, Cona A, Minervini G, Angelini R, Federico R, Scrutton NS, Tavladoraki P. Lys300 plays a major role in the catalytic mechanism of maize polyamine oxidase. Biochemistry. 44: 16108-20. PMID 16331971 DOI: 10.1021/BI050983I  0.404
2005 Neeli R, Girvan HM, Lawrence A, Warren MJ, Leys D, Scrutton NS, Munro AW. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. Febs Letters. 579: 5582-8. PMID 16214136 DOI: 10.1016/J.Febslet.2005.09.023  0.317
2005 Khan H, Barna T, Bruce NC, Munro AW, Leys D, Scrutton NS. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184. The Febs Journal. 272: 4660-71. PMID 16156787 DOI: 10.1111/j.1742-4658.2005.04875.x  0.409
2005 Warman AJ, Roitel O, Neeli R, Girvan HM, Seward HE, Murray SA, McLean KJ, Joyce MG, Toogood H, Holt RA, Leys D, Scrutton NS, Munro AW. Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. Biochemical Society Transactions. 33: 747-53. PMID 16042591 DOI: 10.1042/Bst0330747  0.402
2005 Messiha HL, Bruce NC, Sattelle BM, Sutcliffe MJ, Munro AW, Scrutton NS. Role of active site residues and solvent in proton transfer and the modulation of flavin reduction potential in bacterial morphinone reductase. The Journal of Biological Chemistry. 280: 27103-10. PMID 15905167 DOI: 10.1074/jbc.M502293200  0.398
2005 Neeli R, Roitel O, Scrutton NS, Munro AW. Switching pyridine nucleotide specificity in P450 BM3: mechanistic analysis of the W1046H and W1046A enzymes. The Journal of Biological Chemistry. 280: 17634-44. PMID 15710617 DOI: 10.1074/JBC.M413826200  0.327
2005 Messiha HL, Munro AW, Bruce NC, Barsukov I, Scrutton NS. Reaction of morphinone reductase with 2-cyclohexen-1-one and 1-nitrocyclohexene: proton donation, ligand binding, and the role of residues Histidine 186 and Asparagine 189. The Journal of Biological Chemistry. 280: 10695-709. PMID 15632179 DOI: 10.1074/jbc.M410595200  0.372
2004 Scrutton NS. Chemical aspects of amine oxidation by flavoprotein enzymes. Natural Product Reports. 21: 722-30. PMID 15565251 DOI: 10.1039/B306788M  0.308
2004 Williams RE, Rathbone DA, Scrutton NS, Bruce NC. Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Applied and Environmental Microbiology. 70: 3566-74. PMID 15184158 DOI: 10.1128/AEM.70.6.3566-3574.2004  0.38
2004 Khan H, Barna T, Harris RJ, Bruce NC, Barsukov I, Munro AW, Moody PC, Scrutton NS. Atomic resolution structures and solution behavior of enzyme-substrate complexes of Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase. Multiple conformational states and implications for the mechanism of nitroaromatic explosive degradation. The Journal of Biological Chemistry. 279: 30563-72. PMID 15128738 DOI: 10.1074/jbc.M403541200  0.439
2003 Roitel O, Scrutton NS, Munro AW. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Biochemistry. 42: 10809-21. PMID 12962506 DOI: 10.1021/BI034562H  0.345
2003 Gutierrez A, Munro AW, Grunau A, Wolf CR, Scrutton NS, Roberts GC. Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding. Relaxation kinetic studies with coenzyme analogues. European Journal of Biochemistry / Febs. 270: 2612-21. PMID 12787027 DOI: 10.1046/J.1432-1033.2003.03633.X  0.365
2003 Loechel C, Basran A, Basran J, Scrutton NS, Hall EA. Using trimethylamine dehydrogenase in an enzyme linked amperometric electrode. Part 1. Wild-type enzyme redox mediation. The Analyst. 128: 166-72. PMID 12625558 DOI: 10.1039/B211895E  0.309
2003 McLean KJ, Scrutton NS, Munro AW. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. The Biochemical Journal. 372: 317-27. PMID 12614197 DOI: 10.1042/BJ20021692  0.351
2003 Knight K, Scrutton NS. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. The Biochemical Journal. 367: 19-30. PMID 12079493 DOI: 10.1042/BJ20020667  0.32
2002 Sutcliffe MJ, Scrutton NS. A new conceptual framework for enzyme catalysis. Hydrogen tunnelling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes. European Journal of Biochemistry. 269: 3096-102. PMID 12084049 DOI: 10.1046/J.1432-1033.2002.03020.X  0.345
2002 Barna T, Messiha HL, Petosa C, Bruce NC, Scrutton NS, Moody PC. Crystal structure of bacterial morphinone reductase and properties of the C191A mutant enzyme. The Journal of Biological Chemistry. 277: 30976-83. PMID 12048188 DOI: 10.1074/JBC.M202846200  0.398
2002 Khan H, Harris RJ, Barna T, Craig DH, Bruce NC, Munro AW, Moody PC, Scrutton NS. Kinetic and structural basis of reactivity of pentaerythritol tetranitrate reductase with NADPH, 2-cyclohexenone, nitroesters, and nitroaromatic explosives. The Journal of Biological Chemistry. 277: 21906-12. PMID 11923299 DOI: 10.1074/JBC.M200637200  0.399
2002 Williams RE, Rathbone DA, Moody PC, Scrutton NS, Bruce NC. Degradation of explosives by nitrate ester reductases. Biochemical Society Symposium. 143-53. PMID 11573344 DOI: 10.1042/BSS0680143  0.342
2001 Craig DH, Barna T, Moody PC, Bruce NC, Chapman SK, Munro AW, Scrutton NS. Effects of environment on flavin reactivity in morphinone reductase: analysis of enzymes displaying differential charge near the N-1 atom and C-2 carbonyl region of the active-site flavin. The Biochemical Journal. 359: 315-23. PMID 11583577 DOI: 10.1042/0264-6021:3590315  0.466
2001 Barna TM, Khan H, Bruce NC, Barsukov I, Scrutton NS, Moody PC. Crystal structure of pentaerythritol tetranitrate reductase: "flipped" binding geometries for steroid substrates in different redox states of the enzyme. Journal of Molecular Biology. 310: 433-47. PMID 11428899 DOI: 10.1006/JMBI.2001.4779  0.365
2001 Meskys R, Harris RJ, Casaite V, Basran J, Scrutton NS. Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism. European Journal of Biochemistry. 268: 3390-8. PMID 11422368 DOI: 10.1046/J.1432-1327.2001.02239.X  0.308
2000 Gutierrez A, Doehr O, Paine M, Wolf CR, Scrutton NS, Roberts GC. Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases. Biochemistry. 39: 15990-9. PMID 11123926 DOI: 10.1021/BI002135N  0.399
2000 Harris RJ, Meskys R, Sutcliffe MJ, Scrutton NS. Kinetic studies of the mechanism of carbon-hydrogen bond breakage by the heterotetrameric sarcosine oxidase of Arthrobacter sp. 1-IN. Biochemistry. 39: 1189-98. PMID 10684595 DOI: 10.1021/BI991941V  0.334
1999 Trickey P, Basran J, Lian L, Chen Z, Barton J, Sutcliffe M, Scrutton N, Mathews F. Structural and biochemical characterization of recombinant wild type and a C30A mutant of trimethylamine dehydrogenase from methylophilus methylotrophus (sp. W(3)A(1)). Biochemistry. 39: 7678-7688. PMID 10869173 DOI: 10.1021/Bi9927181  0.439
1999 Basran J, Sutcliffe MJ, Hille R, Scrutton NS. Reductive half-reaction of the H172Q mutant of trimethylamine dehydrogenase: Evidence against a carbanion mechanism and assignment of kinetically influential ionizations in the enzyme-substrate complex Biochemical Journal. 341: 307-314. PMID 10393087 DOI: 10.1042/0264-6021:3410307  0.329
1999 Basran J, Jang MH, Sutcliffe MJ, Hille R, Scrutton NS. The role of Tyr-169 of trimethylamine dehydrogenase in substrate oxidation and magnetic interaction between FMN cofactor and the 4Fe/4S center Journal of Biological Chemistry. 274: 13155-13161. PMID 10224070 DOI: 10.1074/jbc.274.19.13155  0.337
1999 Jang MH, Basran J, Scrutton NS, Hille R. The reaction of trimethylamine dehydrogenase with trimethylamine Journal of Biological Chemistry. 274: 13147-13154. PMID 10224069 DOI: 10.1074/Jbc.274.19.13147  0.321
1999 Craig DH, Bruce NC, Moody PCE, Scrutton NS. Structure and mechanism of an opiate-transforming redox enzyme: morphinone reductase Biochemical Society Transactions. 27: A46-A46. DOI: 10.1042/Bst027A046B  0.4
1998 Ertughrul OW, Errington N, Raza S, Sutcliffe MJ, Rowe AJ, Scrutton NS. Probing the stabilizing role of C-terminal residues in trimethylamine dehydrogenase. Protein Engineering. 11: 447-55. PMID 9725623 DOI: 10.1093/PROTEIN/11.6.447  0.371
1998 Craig DH, Moody PC, Bruce NC, Scrutton NS. Reductive and oxidative half-reactions of morphinone reductase from Pseudomonas putida M10: a kinetic and thermodynamic analysis. Biochemistry. 37: 7598-607. PMID 9585575 DOI: 10.1021/BI980345I  0.316
1997 Mewies M, Basran J, Packman LC, Hille R, Scrutton NS. Involvement of a flavin iminoquinone methide in the formation of 6-hydroxyflavin mononucleotide in trimethylamine dehydrogenase: a rationale for the existence of 8alpha-methyl and C6-linked covalent flavoproteins. Biochemistry. 36: 7162-8. PMID 9188716 DOI: 10.1021/Bi970621D  0.382
1997 Basran J, Mewies M, Mathews FS, Scrutton NS. Selective modification of alkylammonium ion specificity in trimethylamine dehydrogenase by the rational engineering of cation-pi bonding. Biochemistry. 36: 1989-98. PMID 9047296 DOI: 10.1021/BI962623O  0.407
1997 Wilson EK, Huang L, Sutcliffe MJ, Mathews FS, Hille R, Scrutton NS. An exposed tyrosine on the surface of trimethylamine dehydrogenase facilitates electron transfer to electron transferring flavoprotein: Kinetics of transfer in wild-type and mutant complexes Biochemistry. 36: 41-48. PMID 8993316 DOI: 10.1021/Bi961224Q  0.393
1996 Mewies M, Packman LC, Mathews FS, Scrutton NS. Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine. The Biochemical Journal. 267-72. PMID 8694773 DOI: 10.1042/BJ3170267  0.391
1996 Huang L, Scrutton NS, Hille R. Reaction of the C30A mutant of trimethylamine dehydrogenase with diethylmethylamine. The Journal of Biological Chemistry. 271: 13401-6. PMID 8662829 DOI: 10.1074/Jbc.271.23.13401  0.327
1995 Bashir A, Perham RN, Scrutton NS, Berry A. Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase. The Biochemical Journal. 312: 527-33. PMID 8526866  0.734
1995 Packman LC, Mewies M, Scrutton NS. The flavinylation reaction of trimethylamine dehydrogenase. Analysis by directed mutagenesis and electrospray mass spectrometry. The Journal of Biological Chemistry. 270: 13186-91. PMID 7768915 DOI: 10.1074/JBC.270.22.13186  0.424
1995 Yang CC, Packman LC, Scrutton NS. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase. Relationship to trimethylamine dehydrogenase and implications for substrate recognition. European Journal of Biochemistry. 232: 264-71. PMID 7556160 DOI: 10.1111/J.1432-1033.1995.TB20808.X  0.301
1994 Mittl PR, Berry A, Scrutton NS, Perham RN, Schultz GE. A designed mutant of the enzyme glutathione reductase shortens the crystallization time by a factor of forty. Acta Crystallographica. Section D, Biological Crystallography. 50: 228-31. PMID 15299464 DOI: 10.1107/S090744499300993X  0.666
1994 Rietveld P, Arscott LD, Berry A, Scrutton NS, Deonarain MP, Perham RN, Williams CH. Reductive and oxidative half-reactions of glutathione reductase from Escherichia coli. Biochemistry. 33: 13888-95. PMID 7947797 DOI: 10.1021/Bi00250A043  0.715
1994 Raine AR, Scrutton NS, Mathews FS. On the evolution of alternate core packing in eightfold beta/alpha-barrels. Protein Science : a Publication of the Protein Society. 3: 1889-92. PMID 7849604 DOI: 10.1002/Pro.5560031028  0.34
1994 Mittl PR, Berry A, Scrutton NS, Perham RN, Schulz GE. Anatomy of an engineered NAD-binding site. Protein Science : a Publication of the Protein Society. 3: 1504-14. PMID 7833810 DOI: 10.1002/pro.5560030916  0.725
1993 Mittl PR, Berry A, Scrutton NS, Perham RN, Schulz GE. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant. Journal of Molecular Biology. 231: 191-5. PMID 8510142 DOI: 10.1006/jmbi.1993.1274  0.731
1993 Bocanegra JA, Scrutton NS, Perham RN. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry. 32: 2737-40. PMID 8457541  0.608
1992 Deonarain MP, Scrutton NS, Perham RN. Engineering surface charge. 2. A method for purifying heterodimers of Escherichia coli glutathione reductase. Biochemistry. 31: 1498-504. PMID 1737009  0.619
1992 Deonarain MP, Scrutton NS, Perham RN. Engineering surface charge. 1. A method for detecting subunit exchange in Escherichia coli glutathione reductase. Biochemistry. 31: 1491-7. PMID 1737008  0.61
1992 Scrutton NS, Deonarain MP, Berry A, Perham RN. Cooperativity induced by a single mutation at the subunit interface of a dimeric enzyme: glutathione reductase. Science (New York, N.Y.). 258: 1140-3. PMID 1439821  0.726
1991 Henderson GB, Murgolo NJ, Kuriyan J, Osapay K, Kominos D, Berry A, Scrutton NS, Hinchliffe NW, Perham RN, Cerami A. Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Proceedings of the National Academy of Sciences of the United States of America. 88: 8769-73. PMID 1924337 DOI: 10.1073/Pnas.88.19.8769  0.741
1991 Perham RN, Scrutton NS, Berry A. New enzymes for old: redesigning the coenzyme and substrate specificities of glutathione reductase. Bioessays : News and Reviews in Molecular, Cellular and Developmental Biology. 13: 515-25. PMID 1755827 DOI: 10.1002/bies.950131005  0.745
1990 Scrutton NS, Berry A, Perham RN. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 343: 38-43. PMID 2296288 DOI: 10.1038/343038a0  0.727
1990 Scrutton NS, Berry A, Deonarain MP, Perham RN. Active site complementation in engineered heterodimers of Escherichia coli glutathione reductase created in vivo. Proceedings. Biological Sciences / the Royal Society. 242: 217-24. PMID 1983037 DOI: 10.1098/rspb.1990.0127  0.738
1990 Deonarain MP, Scrutton NS, Berry A, Perham RN. Directed mutagenesis of the redox-active disulphide bridge in glutathione reductase from Escherichia coli. Proceedings. Biological Sciences / the Royal Society. 241: 179-86. PMID 1979442 DOI: 10.1098/rspb.1990.0083  0.738
1989 Deonarain MP, Berry A, Scrutton NS, Perham RN. Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of histidine-439 and tyrosine-99. Biochemistry. 28: 9602-7. PMID 2558727 DOI: 10.1021/bi00451a008  0.735
1989 Berry A, Scrutton NS, Perham RN. Switching kinetic mechanism and putative proton donor by directed mutagenesis of glutathione reductase. Biochemistry. 28: 1264-9. PMID 2540822  0.747
1988 Perham RN, Berry A, Scrutton NS. Flavoprotein disulphide oxidoreductases: protein engineering of glutathione reductase from Escherichia coli. Biochemical Society Transactions. 16: 84-7. PMID 3286318  0.664
1988 Scrutton NS, Berry A, Perham RN. Engineering of an intersubunit disulphide bridge in glutathione reductase from Escherichia coli. Febs Letters. 241: 46-50. PMID 3058515 DOI: 10.1016/0014-5793(88)81028-7  0.748
1987 Scrutton NS, Berry A, Perham RN. Purification and characterization of glutathione reductase encoded by a cloned and over-expressed gene in Escherichia coli. The Biochemical Journal. 245: 875-80. PMID 3311037  0.701
1986 Scrutton NS, Berry A, Perham RN. Protein engineering of glutathione reductase: Over-expression of the gene from Escherichia coli Biochemical Society Transactions. 14: 1229-1230.  0.653
Show low-probability matches.