Stephanie M. Willerth, Ph.D. - Publications

Affiliations: 
2008 Washington University, Saint Louis, St. Louis, MO 
Area:
Biomedical Engineering

64 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Willerth SM. Bioprinting functional neural networks. Cell Stem Cell. 31: 151-152. PMID 38306989 DOI: 10.1016/j.stem.2023.12.014  0.309
2023 da Silva VA, Bobotis BC, Correia FF, Lima-Vasconcellos TH, Chiarantin GMD, De La Vega L, Lombello CB, Willerth SM, Malmonge SM, Paschon V, Kihara AH. The Impact of Biomaterial Surface Properties on Engineering Neural Tissue for Spinal Cord Regeneration. International Journal of Molecular Sciences. 24. PMID 37686446 DOI: 10.3390/ijms241713642  0.431
2023 Perez MR, Masri NZ, Walters-Shumka J, Kahale S, Willerth SM. Protocol for 3D Bioprinting Mesenchymal Stem Cell-derived Neural Tissues Using a Fibrin-based Bioink. Bio-Protocol. 13: e4663. PMID 37188103 DOI: 10.21769/BioProtoc.4663  0.431
2023 Robinson M, Haegert A, Li YY, Morova T, Zhang AYY, Witherspoon L, Hach F, Willerth SM, Flannigan R. Differentiation of Peritubular Myoid-Like Cells from Human Induced Pluripotent Stem Cells. Advanced Biology. e2200322. PMID 36895072 DOI: 10.1002/adbi.202200322  0.36
2021 Sharma R, Benwood C, Willerth SM. Drug-releasing Microspheres for Stem Cell Differentiation. Current Protocols. 1: e331. PMID 34919351 DOI: 10.1002/cpz1.331  0.383
2021 Restan Perez M, Sharma R, Masri NZ, Willerth SM. 3D Bioprinting Mesenchymal Stem Cell-Derived Neural Tissues Using a Fibrin-Based Bioink. Biomolecules. 11. PMID 34439916 DOI: 10.3390/biom11081250  0.459
2021 Lei Y, Willerth SM, Fernandes TG. Editorial: Stem Cell Systems Bioengineering. Frontiers in Bioengineering and Biotechnology. 9: 693107. PMID 34026746 DOI: 10.3389/fbioe.2021.693107  0.306
2020 Davoodi E, Sarikhani E, Montazerian H, Ahadian S, Costantini M, Swieszkowski W, Willerth S, Walus K, Mofidfar M, Toyserkani E, Khademhosseini A, Ashammakhi N. Extrusion and Microfluidic-based Bioprinting to Fabricate Biomimetic Tissues and Organs. Advanced Materials Technologies. 5. PMID 33072855 DOI: 10.1002/Admt.201901044  0.358
2020 Smits IPM, Blaschuk OW, Willerth SM. Novel N-cadherin antagonist causes glioblastoma cell death in a 3D bioprinted co-culture model. Biochemical and Biophysical Research Communications. 529: 162-168. PMID 32703405 DOI: 10.1016/J.Bbrc.2020.06.001  0.366
2020 Lee C, Willerth SM, Nygaard HB. The Use of Patient-Derived Induced Pluripotent Stem Cells for Alzheimer's Disease Modeling. Progress in Neurobiology. 101804. PMID 32464173 DOI: 10.1016/J.Pneurobio.2020.101804  0.343
2020 Sharma R, Smits IPM, De La Vega L, Lee C, Willerth SM. 3D Bioprinting Pluripotent Stem Cell Derived Neural Tissues Using a Novel Fibrin Bioink Containing Drug Releasing Microspheres. Frontiers in Bioengineering and Biotechnology. 8: 57. PMID 32117936 DOI: 10.3389/Fbioe.2020.00057  0.488
2020 Paschon V, Correia FF, Morena BC, da Silva VA, Dos Santos GB, da Silva MCC, Cristante AF, Willerth SM, Perrin FE, Kihara AH. CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Molecular Neurobiology. PMID 31927725 DOI: 10.1007/S12035-019-01861-W  0.303
2020 Walus K, Beyer S, Willerth SM. Three-dimensional bioprinting healthy and diseased models of the brain tissue using stem cells Current Opinion in Biomedical Engineering. 14: 25-33. DOI: 10.1016/J.Cobme.2020.03.002  0.514
2019 Abelseth E, Abelseth L, De la Vega L, Beyer ST, Wadsworth SJ, Willerth SM. 3D Printing of Neural Tissues Derived from Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink. Acs Biomaterials Science & Engineering. 5: 234-243. PMID 33405866 DOI: 10.1021/acsbiomaterials.8b01235  0.464
2019 Anil Kumar S, Alonzo M, Allen SC, Abelseth L, Thakur V, Akimoto J, Ito Y, Willerth SM, Suggs L, Chattopadhyay M, Joddar B. A Visible Light-Cross-Linkable, Fibrin-Gelatin-Based Bioprinted Construct with Human Cardiomyocytes and Fibroblasts. Acs Biomaterials Science & Engineering. 5: 4551-4563. PMID 32258387 DOI: 10.1021/Acsbiomaterials.9B00505  0.343
2019 Willerth SM. How can microsphere-mediated delivery of small molecules serve as a novel tool for engineering tissues from stem cells? Therapeutic Delivery. 10: 671-674. PMID 31608826 DOI: 10.4155/Tde-2019-0071  0.478
2019 Cleversey C, Robinson M, Willerth SM. 3D Printing Breast Tissue Models: A Review of Past Work and Directions for Future Work. Micromachines. 10. PMID 31357657 DOI: 10.3390/Mi10080501  0.379
2019 de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D bioprinting models of neural tissues: the current state of the field and future directions. Brain Research Bulletin. PMID 31200099 DOI: 10.1016/J.Brainresbull.2019.06.007  0.414
2019 Robinson M, Valente KP, Willerth SM. A Novel Toolkit for Characterizing the Mechanical and Electrical Properties of Engineered Neural Tissues. Biosensors. 9. PMID 30939804 DOI: 10.3390/Bios9020051  0.422
2019 Willerth SM, Sakiyama-Elbert SE. Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery Stemjournal. 1: 1-25. DOI: 10.3824/Stembook.1.1.1  0.689
2019 Lee C, Abelseth E, de la Vega L, Willerth S. Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening Materials Today Chemistry. 12: 78-84. DOI: 10.1016/J.Mtchem.2018.12.005  0.41
2018 Tasnim N, De la Vega L, Anil Kumar S, Abelseth L, Alonzo M, Amereh M, Joddar B, Willerth SM. 3D Bioprinting Stem Cell Derived Tissues. Cellular and Molecular Bioengineering. 11: 219-240. PMID 31719887 DOI: 10.1007/S12195-018-0530-2  0.497
2018 Robinson M, Fraser I, McKee E, Scheck K, Chang L, Willerth SM. Transdifferentiating Astrocytes Into Neurons Using ASCL1 Functionalized With a Novel Intracellular Protein Delivery Technology. Frontiers in Bioengineering and Biotechnology. 6: 173. PMID 30525033 DOI: 10.3389/Fbioe.2018.00173  0.321
2018 Lee C, Robinson M, Willerth SM. Direct Reprogramming of Glioblastoma Cells into Neurons Using Small Molecules. Acs Chemical Neuroscience. PMID 30091580 DOI: 10.1021/Acschemneuro.8B00365  0.406
2018 Agbay A, De La Vega L, Nixon G, Willerth SM. Guggulsterone-releasing microspheres direct the differentiation of human induced pluripotent stem cells into neural phenotypes. Biomedical Materials (Bristol, England). PMID 29368696 DOI: 10.1088/1748-605X/Aaaa77  0.48
2018 de la Vega L, A. Rosas Gómez D, Abelseth E, Abelseth L, Allisson da Silva V, Willerth S. 3D Bioprinting Human Induced Pluripotent Stem Cell-Derived Neural Tissues Using a Novel Lab-on-a-Printer Technology Applied Sciences. 8: 2414. DOI: 10.3390/App8122414  0.509
2018 Willerth SM. Bioprinting neural tissues using stem cells as a tool for screening drug targets for Alzheimer’s disease Journal of 3d Printing in Medicine. 2: 163-165. DOI: 10.2217/3DP-2018-0016  0.346
2018 Abelseth E, Abelseth L, De la Vega L, Beyer ST, Wadsworth SJ, Willerth SM. 3D Printing of Neural Tissues Derived from Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink Acs Biomaterials Science & Engineering. 5: 234-243. DOI: 10.1021/Acsbiomaterials.8B01235  0.553
2018 De la Vega L, Karmirian K, Willerth SM. Engineering Neural Tissue from Human Pluripotent Stem Cells Using Novel Small Molecule Releasing Microspheres Advanced Biosystems. 2: 1800133. DOI: 10.1002/ADBI.201800133  0.383
2017 Thomas M, Willerth SM. 3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening. Frontiers in Bioengineering and Biotechnology. 5: 69. PMID 29204424 DOI: 10.3389/Fbioe.2017.00069  0.439
2017 Hall ME, Mohtaram NK, Willerth SM, Edwards R. Modeling the behavior of human induced pluripotent stem cells seeded on melt electrospun scaffolds. Journal of Biological Engineering. 11: 38. PMID 29075321 DOI: 10.1186/S13036-017-0080-5  0.481
2017 Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, Thakur A, Mohtaram NK, Bayati A, Dolatshahi-Pirouz A, Nikkhah M, Willerth SM, Akbari M. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs. Advanced Materials (Deerfield Beach, Fla.). PMID 28370405 DOI: 10.1002/Adma.201606061  0.402
2017 Edgar JM, Robinson M, Willerth SM. Fibrin Hydrogels Induce Mixed Dorsal/Ventral Spinal Neuron Identities During Differentiation of Human Induced Pluripotent Stem Cells. Acta Biomaterialia. PMID 28088670 DOI: 10.1016/J.Actbio.2017.01.040  0.447
2017 Mohtaram NK, Karamzadeh V, Shafieyan Y, Willerth SM. Commercializing Electrospun Scaffolds For Pluripotent Stem Cell-Based Tissue Engineering Applications Electrospinning. 2: 62-72. DOI: 10.1515/esp-2017-0003  0.431
2017 Willerth SM. Biomimetic strategies for replicating the neural stem cell niche Current Opinion in Chemical Engineering. 15: 8-14. DOI: 10.1016/J.Coche.2016.11.004  0.527
2016 Willerth SM. Engineering personalized neural tissue using functionalized transcription factors. Neural Regeneration Research. 11: 1570-1571. PMID 27904482 DOI: 10.4103/1673-5374.193229  0.359
2016 Agbay A, Edgar JM, Robinson M, Styan T, Wilson K, Schroll J, Ko J, Khadem Mohtaram N, Jun MB, Willerth SM. Biomaterial Strategies for Delivering Stem Cells as a Treatment for Spinal Cord Injury. Cells, Tissues, Organs. 202: 42-51. PMID 27701166 DOI: 10.1159/000446474  0.517
2016 Robinson M, Chapani P, Styan T, Vaidyanathan R, Willerth SM. Functionalizing Ascl1 with Novel Intracellular Protein Delivery Technology for Promoting Neuronal Differentiation of Human Induced Pluripotent Stem Cells. Stem Cell Reviews. PMID 27138845 DOI: 10.1007/S12015-016-9655-7  0.508
2016 Swayne LA, Sanchez-Arias JC, Agbay A, Willerth SM. What Are Neural Stem Cells, and Why Are They Important? Frontiers For Young Minds. 4. DOI: 10.3389/Frym.2016.00020  0.47
2015 Robinson M, Yau SY, Sun L, Gabers N, Bibault E, Christie BR, Willerth SM. Optimizing Differentiation Protocols for Producing Dopaminergic Neurons from Human Induced Pluripotent Stem Cells for Tissue Engineering Applications: Supplementary Issue: Stem Cell Biology. Biomarker Insights. 61-70. PMID 36876191 DOI: 10.4137/BMI.S20064  0.395
2015 Montgomery A, Wong A, Gabers N, Willerth SM. Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds. Biomaterials Science. 3: 401-13. PMID 26218131 DOI: 10.1039/C4Bm00299G  0.548
2015 Mohtaram NK, Ko J, King C, Sun L, Muller N, Jun MB, Willerth SM. Electrospun biomaterial scaffolds with varied topographies for neuronal differentiation of human-induced pluripotent stem cells. Journal of Biomedical Materials Research. Part A. 103: 2591-601. PMID 25524598 DOI: 10.1002/Jbm.A.35392  0.509
2015 Robinson M, Yau SY, Sun L, Gabers N, Bibault E, Christie BR, Willerth SM. Optimizing differentiation protocols for producing dopaminergic neurons from human induced pluripotent stem cells for tissue engineering applications Biomarker Insights. 10: 61-70. DOI: 10.4137/Bmi.S20064  0.48
2015 Ko J, Mohtaram NK, Lee PC, Willerth SM, Jun MBG. Mathematical model for predicting topographical properties of poly (ε-caprolactone) melt electrospun scaffolds including the effects of temperature and linear transitional speed Journal of Micromechanics and Microengineering. 25. DOI: 10.1088/0960-1317/25/4/045018  0.313
2015 Mohtaram NK, Ko J, Agbay A, Rattray D, Neill PO, Rajwani A, Vasandani R, Thu HL, Jun MBG, Willerth SM. Development of a glial cell-derived neurotrophic factor-releasing artificial dura for neural tissue engineering applications Journal of Materials Chemistry B. 3: 7974-7985. DOI: 10.1039/C5Tb00871A  0.538
2015 Gomez JC, Edgar JM, Agbay AM, Bibault E, Montgomery A, Mohtaram NK, Willerth SM. Incorporation of Retinoic Acid Releasing Microspheres into Pluripotent Stem Cell Aggregates for Inducing Neuronal Differentiation Cellular and Molecular Bioengineering. 8: 307-319. DOI: 10.1007/S12195-015-0401-Z  0.457
2014 Ko J, Mohtaram NK, Ahmed F, Montgomery A, Carlson M, Lee PC, Willerth SM, Jun MB. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. Journal of Biomaterials Science. Polymer Edition. 25: 1-17. PMID 23998440 DOI: 10.1080/09205063.2013.830913  0.475
2014 Mohtaram NK, Ko J, Montgomery A, Carlson M, Sun L, Wong A, Robinson M, Jun MBG, Willerth SM. Multifunctional electrospun scaffolds for promoting neuronal differentiation of induced pluripotent stem cells Journal of Biomaterials and Tissue Engineering. 4: 906-914. DOI: 10.1166/Jbt.2014.1223  0.518
2014 Ko J, Bhullar SK, Mohtaram NK, Willerth SM, Jun MBG. Using mathematical modeling to control topographical properties of poly (ε-caprolactone) melt electrospun scaffolds Journal of Micromechanics and Microengineering. 24. DOI: 10.1088/0960-1317/24/6/065009  0.326
2014 Agbay A, Mohtaram NK, Willerth SM. Controlled release of glial cell line-derived neurotrophic factor from poly(ε-caprolactone) microspheres Drug Delivery and Translational Research. 4: 159-170. DOI: 10.1007/S13346-013-0189-0  0.369
2013 Mohtaram NK, Montgomery A, Willerth SM. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomedical Materials (Bristol, England). 8: 022001. PMID 23385544 DOI: 10.1088/1748-6041/8/2/022001  0.365
2012 Ko J, Kolehmainen K, Ahmed F, Jun MB, Willerth SM. Towards high throughput tissue engineering: development of chitosan-calcium phosphate scaffolds for engineering bone tissue from embryonic stem cells. American Journal of Stem Cells. 1: 81-9. PMID 23671800  0.413
2012 Kolehmainen K, Willerth SM. Preparation of 3D fibrin scaffolds for stem cell culture applications. Journal of Visualized Experiments : Jove. e3641. PMID 22415575 DOI: 10.3791/3641  0.531
2011 Willerth SM. Neural tissue engineering using embryonic and induced pluripotent stem cells. Stem Cell Research & Therapy. 2: 17. PMID 21539726 DOI: 10.1186/Scrt58  0.543
2009 Xie J, Macewan MR, Willerth SM, Li X, Moran DW, Sakiyama-Elbert SE, Xia Y. Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering. Advanced Functional Materials. 19: 2312-2318. PMID 19830261 DOI: 10.1002/Adfm.200801904  0.604
2009 Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 30: 354-62. PMID 18930315 DOI: 10.1016/J.Biomaterials.2008.09.046  0.698
2009 Willerth SM, Sakiyama-Elbert SE. Kinetic analysis of neurotrophin-3-mediated differentiation of embryonic stem cells into neurons. Tissue Engineering. Part A. 15: 307-18. PMID 18800878 DOI: 10.1089/Ten.Tea.2008.0071  0.624
2009 Willerth SM, Rader A, Sakiyama-Elbert SE. Erratum to “The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds” [Stem Cell Res 1 (2008) 205–218] Stem Cell Research. 2: 231-236. DOI: 10.1016/J.Scr.2008.10.001  0.663
2008 Willerth SM, Rader A, Sakiyama-Elbert SE. The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Research. 1: 205-18. PMID 19383401 DOI: 10.1016/J.Scr.2008.05.006  0.714
2008 Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration. Advanced Drug Delivery Reviews. 60: 263-76. PMID 18029050 DOI: 10.1016/J.Addr.2007.08.028  0.603
2007 Willerth SM, Faxel TE, Gottlieb DI, Sakiyama-Elbert SE. The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells (Dayton, Ohio). 25: 2235-44. PMID 17585170 DOI: 10.1634/Stemcells.2007-0111  0.659
2007 Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews. 59: 325-38. PMID 17482308 DOI: 10.1016/J.Addr.2007.03.014  0.619
2007 Willerth SM, Johnson PJ, Maxwell DJ, Parsons SR, Doukas ME, Sakiyama-Elbert SE. Rationally designed peptides for controlled release of nerve growth factor from fibrin matrices Journal of Biomedical Materials Research - Part A. 80: 13-23. PMID 16958043 DOI: 10.1002/Jbm.A.30844  0.557
2006 Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials. 27: 5990-6003. PMID 16919326 DOI: 10.1016/J.Biomaterials.2006.07.036  0.675
Show low-probability matches.