Karen J. Colley - Publications

Affiliations: 
University of Illinois at Chicago, Health Sciences Center, Chicago, IL 60612, United States 
Area:
Cell Biology, Biochemistry

45 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2018 Hsu HJ, Palka-Hamblin H, Bhide GP, Myung JH, Cheong M, Colley KJ, Hong S. Non-catalytic Endosialidase Enables Surface Capture of Small-cell Lung Cancer Cells Utilizing Strong Dendrimer-mediated Enzyme-Glycoprotein Interactions. Analytical Chemistry. PMID 29473730 DOI: 10.1021/Acs.Analchem.8B00427  0.398
2018 Bhide GP, Zapater JL, Colley KJ. Autopolysialylation of polysialyltransferases is required for polysialylation and polysialic acid chain elongation on select glycoprotein substrates. The Journal of Biological Chemistry. 293: 701-716. PMID 29183999 DOI: 10.1074/Jbc.Ra117.000401  0.499
2017 Bhide GP, Prehna G, Ramirez BE, Colley KJ. The polybasic region of the polysialyltransferase ST8Sia-IV binds directly to the neural cell adhesion molecule, NCAM. Biochemistry. PMID 28233978 DOI: 10.1021/Acs.Biochem.6B01221  0.527
2016 Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochemistry and Cell Biology. PMID 27975143 DOI: 10.1007/S00418-016-1520-X  0.446
2016 Bhide GP, Fernandes NR, Colley KJ. Sequence requirements for neuropilin-2 recognition by ST8SiaIV and polysialylation of its O-glycans. The Journal of Biological Chemistry. PMID 26884342 DOI: 10.1074/Jbc.M116.714329  0.522
2014 Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Critical Reviews in Biochemistry and Molecular Biology. 49: 498-532. PMID 25373518 DOI: 10.3109/10409238.2014.976606  0.432
2014 Colley KJ. Glycobiology: drifting toward polymer perfection. Nature Chemical Biology. 10: 410-1. PMID 24727902 DOI: 10.1038/Nchembio.1506  0.302
2013 Thompson MG, Foley DA, Colley KJ. The polysialyltransferases interact with sequences in two domains of the neural cell adhesion molecule to allow its polysialylation. The Journal of Biological Chemistry. 288: 7282-93. PMID 23341449 DOI: 10.1074/Jbc.M112.438374  0.727
2012 Zapater JL, Colley KJ. Sequences prior to conserved catalytic motifs of polysialyltransferase ST8Sia IV are required for substrate recognition. The Journal of Biological Chemistry. 287: 6441-53. PMID 22184126 DOI: 10.1074/Jbc.M111.322024  0.509
2011 Thompson MG, Foley DA, Swartzentruber KG, Colley KJ. Sequences at the interface of the fifth immunoglobulin domain and first fibronectin type III repeat of the neural cell adhesion molecule are critical for its polysialylation. The Journal of Biological Chemistry. 286: 4525-34. PMID 21131353 DOI: 10.1074/Jbc.M110.200386  0.735
2010 Foley DA, Swartzentruber KG, Thompson MG, Mendiratta SS, Colley KJ. Sequences from the first fibronectin type III repeat of the neural cell adhesion molecule allow O-glycan polysialylation of an adhesion molecule chimera. The Journal of Biological Chemistry. 285: 35056-67. PMID 20805222 DOI: 10.1074/Jbc.M110.170209  0.735
2010 Foley DA, Swartzentruber KG, Lavie A, Colley KJ. Structure and mutagenesis of neural cell adhesion molecule domains: evidence for flexibility in the placement of polysialic acid attachment sites. The Journal of Biological Chemistry. 285: 27360-71. PMID 20573953 DOI: 10.1074/Jbc.M110.140038  0.722
2010 Colley KJ. Structural basis for the polysialylation of the neural cell adhesion molecule. Advances in Experimental Medicine and Biology. 663: 111-26. PMID 20017018 DOI: 10.1007/S11064-008-9652-6  0.368
2009 Foley DA, Swartzentruber KG, Colley KJ. Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM. The Journal of Biological Chemistry. 284: 15505-16. PMID 19336400 DOI: 10.1074/Jbc.M809696200  0.766
2008 Zhao W, Colley KJ. Nucleotide sugar transporters of the Golgi apparatus The Golgi Apparatus: State of the Art 110 Years After Camillo Golgi's Discovery. 190-206. DOI: 10.1007/978-3-211-76310-0_13  0.49
2006 Asahina S, Sato C, Matsuno M, Matsuda T, Colley K, Kitajima K. Involvement of the alpha2,8-polysialyltransferases II/STX and IV/PST in the biosynthesis of polysialic acid chains on the O-linked glycoproteins in rainbow trout ovary. Journal of Biochemistry. 140: 687-701. PMID 17023684 DOI: 10.1093/Jb/Mvj200  0.484
2006 Mendiratta SS, Sekulic N, Hernandez-Guzman FG, Close BE, Lavie A, Colley KJ. A novel alpha-helix in the first fibronectin type III repeat of the neural cell adhesion molecule is critical for N-glycan polysialylation. The Journal of Biological Chemistry. 281: 36052-9. PMID 17003032 DOI: 10.1074/Jbc.M608073200  0.787
2006 Zhao W, Chen TL, Vertel BM, Colley KJ. The CMP-sialic acid transporter is localized in the medial-trans Golgi and possesses two specific endoplasmic reticulum export motifs in its carboxyl-terminal cytoplasmic tail. The Journal of Biological Chemistry. 281: 31106-18. PMID 16923816 DOI: 10.1074/Jbc.M605564200  0.547
2005 Mendiratta SS, Sekulic N, Lavie A, Colley KJ. Specific amino acids in the first fibronectin type III repeat of the neural cell adhesion molecule play a role in its recognition and polysialylation by the polysialyltransferase ST8Sia IV/PST. The Journal of Biological Chemistry. 280: 32340-8. PMID 16027151 DOI: 10.1074/Jbc.M506217200  0.544
2005 Fenteany FH, Colley KJ. Multiple signals are required for alpha2,6-sialyltransferase (ST6Gal I) oligomerization and Golgi localization. The Journal of Biological Chemistry. 280: 5423-9. PMID 15582997 DOI: 10.1074/Jbc.M412396200  0.707
2003 Close BE, Mendiratta SS, Geiger KM, Broom LJ, Ho LL, Colley KJ. The minimal structural domains required for neural cell adhesion molecule polysialylation by PST/ST8Sia IV and STX/ST8Sia II. The Journal of Biological Chemistry. 278: 30796-805. PMID 12791681 DOI: 10.1074/Jbc.M305390200  0.792
2003 Chen TL, Chen C, Bergeron NQ, Close BE, Bohrer TJ, Vertel BM, Colley KJ. The two rat alpha 2,6-sialyltransferase (ST6Gal I) isoforms: evaluation of catalytic activity and intra-Golgi localization. Glycobiology. 13: 109-17. PMID 12626411 DOI: 10.1093/Glycob/Cwg015  0.791
2002 Semel AC, Seales EC, Singhal A, Eklund EA, Colley KJ, Bellis SL. Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors. The Journal of Biological Chemistry. 277: 32830-6. PMID 12091385 DOI: 10.1074/Jbc.M202493200  0.387
2001 Close BE, Wilkinson JM, Bohrer TJ, Goodwin CP, Broom LJ, Colley KJ. The polysialyltransferase ST8Sia II/STX: posttranslational processing and role of autopolysialylation in the polysialylation of neural cell adhesion molecule. Glycobiology. 11: 997-1008. PMID 11744634 DOI: 10.1093/Glycob/11.11.997  0.77
2001 Qian R, Chen C, Colley KJ. Location and mechanism of α2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing Journal of Biological Chemistry. 276: 28641-28649. PMID 11356854 DOI: 10.1074/Jbc.M103664200  0.483
2000 Nakata D, Close BE, Colley KJ, Matsuda T, Kitajima K. Molecular cloning and expression of the mouse N-acetylneuraminic acid 9-phosphate synthase which does not have deaminoneuraminic acid (KDN) 9-phosphate synthase activity. Biochemical and Biophysical Research Communications. 273: 642-8. PMID 10873658 DOI: 10.1006/Bbrc.2000.2983  0.755
2000 Chen C, Ma J, Lazic A, Backovic M, Colley KJ. Formation of insoluble oligomers correlates with ST6Gal I stable localization in the Golgi Journal of Biological Chemistry. 275: 13819-13826. PMID 10788504 DOI: 10.1074/Jbc.275.18.13819  0.478
2000 Chen C, Colley KJ. Minimal structural and glycosylation requirements for ST6Gal I activity and trafficking Glycobiology. 10: 531-538. PMID 10764842 DOI: 10.1093/Glycob/10.5.531  0.437
2000 Close BE, Tao K, Colley KJ. Polysialyltransferase-1 autopolysialylation is not requisite for polysialylation of neural cell adhesion molecule. The Journal of Biological Chemistry. 275: 4484-91. PMID 10660622 DOI: 10.1074/Jbc.275.6.4484  0.799
1999 Kitazume-Kawaguchi S, Dohmae N, Takio K, Tsuji S, Colley KJ. The relationship between ST6Gal I Golgi retention and its cleavage-secretion Glycobiology. 9: 1397-1406. PMID 10561465 DOI: 10.1093/Oxfordjournals.Glycob.A018856  0.505
1999 Ma J, Simonovic M, Qian R, Colley KJ. Sialyltransferase isoforms are phosphorylated in the cis-medial Golgi on serine and threonine residues in their luminal sequences Journal of Biological Chemistry. 274: 8046-8052. PMID 10075704 DOI: 10.1074/Jbc.274.12.8046  0.411
1998 Close BE, Colley KJ. In vivo autopolysialylation and localization of the polysialyltransferases PST and STX. The Journal of Biological Chemistry. 273: 34586-93. PMID 9852130 DOI: 10.1074/Jbc.273.51.34586  0.78
1998 Zhu G, Allende ML, Jaskiewicz E, Qian R, Darling DS, Worth CA, Colley KJ, Young WW. Two soluble glycosyltransferases glycosylate less efficiently in vivo than their membrane bound counterparts. Glycobiology. 8: 831-40. PMID 9639544 DOI: 10.1093/Glycob/8.8.831  0.452
1997 Colley KJ. Golgi localization of glycosyltransferases: More questions than answers Glycobiology. 7: 1-13. PMID 9061359 DOI: 10.1093/Glycob/7.1.1  0.506
1997 Ma J, Qian R, Rausa FM, Colley KJ. Two naturally occurring α2,6-sialyltransferase forms with a single amino acid change in the catalytic domain differ in their catalytic activity and proteolytic processing Journal of Biological Chemistry. 272: 672-679. PMID 8995311 DOI: 10.1074/Jbc.272.1.672  0.486
1997 Colley KJ. Localization of Golgi glycosyltransferases Trends in Glycoscience and Glycotechnology. 9: 267-282. DOI: 10.4052/Tigg.9.267  0.462
1996 Kaneko Y, Yamamoto H, Kersey DS, Colley KJ, Leestma JE, Moskal JR. The expression of Gal beta 1,4GlcNAc alpha 2,6 sialyltransferase and alpha 2,6-linked sialoglycoconjugates in human brain tumors. Acta Neuropathologica. 91: 284-92. PMID 8834541 DOI: 10.1007/S004010050427  0.371
1996 Martersteck CM, Kedersha NL, Drapp DA, Tsui TG, Colley KJ. Unique α2, 8-polysialylated glycoproteins in breast cancer and leukemia cells Glycobiology. 6: 289-301. PMID 8724137 DOI: 10.1093/Glycob/6.3.289  0.374
1996 Ma J, Colley KJ. A disulfide-bonded dimer of the golgi β-galactoside α2,6-sialyltransferase is catalytically inactive yet still retains the ability to bind galactose Journal of Biological Chemistry. 271: 7758-7766. PMID 8631818 DOI: 10.1074/Jbc.271.13.7758  0.334
1995 Abe M, Nakamura F, Tan F, Deddish PA, Colley KJ, Becker RP, Skidgel RA, Erdös EG. Expression of rat kallikrein and epithelial polarity in transfected Madin-Darby canine kidney cells Hypertension. 26: 891-898. PMID 7490145 DOI: 10.1161/01.Hyp.26.6.891  0.397
1993 Dahdal RY, Colley KJ. Specific sequences in the signal anchor of the β-galactoside α-2,6-sialyltransferase are not essential for golgi localization: Membrane flanking sequences may specify golgi retention Journal of Biological Chemistry. 268: 26310-26319. PMID 8253753  0.307
1992 Colley KJ, Lee EU, Paulson JC. The signal anchor and stem regions of the β-galactoside α2,6-sialyltransferase may each act to localize the enzyme to the golgi apparatus Journal of Biological Chemistry. 267: 7784-7793. PMID 1560012  0.416
1992 Munro S, Bast BJ, Colley KJ, Tedder TF. The B lymphocyte surface antigen CD75 is not an alpha-2,6-sialyltransferase but is a carbohydrate antigen, the production of which requires the enzyme. Cell. 68: 1003. PMID 1547499 DOI: 10.1016/0092-8674(92)90070-S  0.329
1989 Colley KJ, Lee EU, Adler B, Browne JK, Paulson JC. Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide Journal of Biological Chemistry. 264: 17619-17622. PMID 2808334  0.303
1987 Colley KJ, Baenziger JU. Post-translational modifications of the core-specific lectin. Relationship to assembly, ligand binding, and secretion Journal of Biological Chemistry. 262: 10296-10303. PMID 3112140  0.346
Show low-probability matches.