Year |
Citation |
Score |
2023 |
Sankin GN, Fang Z, Gu J, Jing Y, Zhong P. A Multi-Spark Electrohydraulic Shock Wave Generator with Adjustable Pressure Field Distribution and Beam Steering Capability. Frontiers in Urology. 3. PMID 39193495 DOI: 10.3389/fruro.2023.1057723 |
0.311 |
|
2023 |
Xiang G, Chen J, Ho D, Sankin G, Zhao X, Liu Y, Wang K, Dolbow J, Yao J, Zhong P. Shock waves generated by toroidal bubble collapse are imperative for kidney stone dusting during Holmium:YAG laser lithotripsy. Ultrasonics Sonochemistry. 101: 106649. PMID 37866136 DOI: 10.1016/j.ultsonch.2023.106649 |
0.304 |
|
2023 |
Xiang G, Li D, Chen J, Mishra A, Sankin G, Zhao X, Tang Y, Wang K, Yao J, Zhong P. Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy. Physics of Fluids (Woodbury, N.Y. : 1994). 35: 033303. PMID 36896246 DOI: 10.1063/5.0139741 |
0.301 |
|
2019 |
Liao D, Li F, Lu D, Zhong P. Activation of Piezo1 mechanosensitive ion channel in HEK293T cells by 30 MHz vertically deployed surface acoustic waves. Biochemical and Biophysical Research Communications. PMID 31451220 DOI: 10.1016/J.Bbrc.2019.08.078 |
0.376 |
|
2019 |
Cao S, Zhang Y, Liao D, Zhong P, Wang KG. Shock-Induced Damage and Dynamic Fracture in Cylindrical Bodies Submerged in Liquid. International Journal of Solids and Structures. 169: 55-71. PMID 31423024 DOI: 10.1016/J.Ijsolstr.2019.04.002 |
0.381 |
|
2018 |
Fovargue D, Mitran S, Sankin G, Zhang Y, Zhong P. An experimentally-calibrated damage mechanics model for stone fracture in shock wave lithotripsy. International Journal of Fracture. 211: 203-216. PMID 30349151 DOI: 10.1007/S10704-018-0283-X |
0.352 |
|
2017 |
Li F, Yang C, Yuan F, Liao D, Li T, Guilak F, Zhong P. Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow. Proceedings of the National Academy of Sciences of the United States of America. PMID 29282315 DOI: 10.1073/Pnas.1713905115 |
0.332 |
|
2017 |
Xing Y, Chen TT, Simmons WN, Sankin G, Cocks FH, Lipkin ME, Preminger GM, Zhong P. Comparison of Broad vs. Narrow Focal Width Lithotripter Fields. Journal of Endourology. PMID 28340536 DOI: 10.1089/End.2016.0560 |
0.333 |
|
2017 |
Li F, Yuan F, Sankin G, Yang C, Zhong P. A Microfluidic System with Surface Patterning for Investigating Cavitation Bubble(s)-Cell Interaction and the Resultant Bioeffects at the Single-cell Level. Journal of Visualized Experiments : Jove. PMID 28117807 DOI: 10.3791/55106 |
0.324 |
|
2017 |
Yang C, Zhang Y, Zhong P. Investigation of stone damage patterns and mechanisms in nano pulse lithotripsy Journal of the Acoustical Society of America. 141: 3719-3719. DOI: 10.1121/1.4988142 |
0.333 |
|
2017 |
Cao S, Zhang Y, Liao D, Zhong P, Wang KG. Assessing the effect of lithotripter focal width on the fracture potential of stones in shockwave lithotripsy The Journal of the Acoustical Society of America. 141: 3718-3718. DOI: 10.1121/1.4988139 |
0.362 |
|
2017 |
Zhang Y, Yang C, Liao D, Zhong P. Interaction between lithotripsy-induced surface acoustic waves and pre-existing cracks Journal of the Acoustical Society of America. 141: 3673-3673. DOI: 10.1121/1.4987971 |
0.415 |
|
2016 |
Zhang Y, Nault I, Mitran S, Iversen ES, Zhong P. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy. Ultrasound in Medicine & Biology. PMID 27515177 DOI: 10.1016/J.Ultrasmedbio.2016.06.018 |
0.391 |
|
2016 |
Zhang Y, Yang C, Zhong P. Generation of different types of surface acoustic waves by shock wave-Stone interaction Journal of the Acoustical Society of America. 140: 3307-3307. DOI: 10.1121/1.4970531 |
0.447 |
|
2015 |
Neisius A, Lipkin ME, Rassweiler JJ, Zhong P, Preminger GM, Knoll T. Shock wave lithotripsy: the new phoenix? World Journal of Urology. 33: 213-21. PMID 25081010 DOI: 10.1007/S00345-014-1369-3 |
0.386 |
|
2015 |
Frank S, Lautz J, Sankin GN, Szeri AJ, Zhong P. Bubble Proliferation or Dissolution of Cavitation Nuclei in the Beam Path of a Shock-Wave Lithotripter Physical Review Applied. 3. DOI: 10.1103/Physrevapplied.3.034002 |
0.397 |
|
2014 |
Neisius A, Smith NB, Sankin G, Kuntz NJ, Madden JF, Fovargue DE, Mitran S, Lipkin ME, Simmons WN, Preminger GM, Zhong P. Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter. Proceedings of the National Academy of Sciences of the United States of America. 111: E1167-75. PMID 24639497 DOI: 10.1073/Pnas.1319203111 |
0.426 |
|
2014 |
Nault I, Mitran SM, Sankin G, Zhong P. Multiscale model of cavitation bubble formation and breakdown Journal of the Acoustical Society of America. 136: 2192-2192. DOI: 10.1121/1.4899947 |
0.341 |
|
2014 |
Mitran SM, Sankin G, Zhang Y, Zhong P. Multiscale model of comminution in shock wave lithotripsy Journal of the Acoustical Society of America. 136: 2191-2191. DOI: 10.1121/1.4899942 |
0.372 |
|
2013 |
Hsiao CT, Choi JK, Singh S, Chahine GL, Hay TA, Ilinskii YA, Zabolotskaya EA, Hamilton MF, Sankin G, Yuan F, Zhong P. Modelling single- and tandem-bubble dynamics between two parallel plates for biomedical applications. Journal of Fluid Mechanics. 716. PMID 24293683 DOI: 10.1017/Jfm.2012.526 |
0.302 |
|
2013 |
Fovargue DE, Mitran S, Smith NB, Sankin GN, Simmons WN, Zhong P. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter. The Journal of the Acoustical Society of America. 134: 1598-609. PMID 23927200 DOI: 10.1121/1.4812881 |
0.386 |
|
2013 |
Smith NB, Zhong P. A heuristic model of stone comminution in shock wave lithotripsy. The Journal of the Acoustical Society of America. 134: 1548-58. PMID 23927195 DOI: 10.1121/1.4812876 |
0.445 |
|
2013 |
Mancini JG, Neisius A, Smith N, Sankin G, Astroza GM, Lipkin ME, Simmons WN, Preminger GM, Zhong P. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model. The Journal of Urology. 190: 1096-101. PMID 23485509 DOI: 10.1016/J.Juro.2013.02.074 |
0.432 |
|
2013 |
Lautz J, Sankin G, Zhong P. Turbulent water coupling in shock wave lithotripsy. Physics in Medicine and Biology. 58: 735-48. PMID 23322027 DOI: 10.1088/0031-9155/58/3/735 |
0.448 |
|
2013 |
Lautz JM, Sankin G, Kleinhenz J, Zhong P. A non-axisymmetric, elongated pressure distribution in the lithotripter focal plane enhances stone comminution in vitro during simulated respiratory motion Journal of the Acoustical Society of America. 134: 4183-4183. DOI: 10.1121/1.4831338 |
0.349 |
|
2013 |
Lautz J, Sankin G, Zhong P. Corrigendum: Turbulent water coupling in shock wave lithotripsy Physics in Medicine and Biology. 58: 2735-2735. DOI: 10.1088/0031-9155/58/8/2735 |
0.387 |
|
2012 |
Smith N, Zhong P. Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy. Journal of Biomechanics. 45: 2520-5. PMID 22935690 DOI: 10.1016/J.Jbiomech.2012.07.025 |
0.433 |
|
2012 |
Zhou Y, Qin J, Zhong P. Characteristics of the secondary bubble cluster produced by an electrohydraulic shock wave lithotripter. Ultrasound in Medicine & Biology. 38: 601-10. PMID 22390990 DOI: 10.1016/J.Ultrasmedbio.2011.12.022 |
0.343 |
|
2012 |
Smith N, Sankin GN, Simmons WN, Nanke R, Fehre J, Zhong P. A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization Review of Scientific Instruments. 83. PMID 22299970 DOI: 10.1063/1.3678638 |
0.405 |
|
2011 |
Yuan F, Sankin G, Zhong P. Dynamics of tandem bubble interaction in a microfluidic channel. The Journal of the Acoustical Society of America. 130: 3339-46. PMID 22088007 DOI: 10.1121/1.3626134 |
0.312 |
|
2011 |
Lautz J, Sankin G, Zhong P. Synergistic interaction between stress waves and cavitation is important for successful comminution of residual stone fragments in shock wave lithotripsy Journal of the Acoustical Society of America. 130: 2538-2538. DOI: 10.1121/1.3655139 |
0.39 |
|
2011 |
Fovargue D, Mitran S, Sankin G, Smith N, Zhong P. Experimentally validated multiphysics computational model of refracting shock wave lithotripter. Journal of the Acoustical Society of America. 129: 2678-2678. DOI: 10.1121/1.3588974 |
0.398 |
|
2011 |
Smith N, Simmons WN, Zhong P. Assessing the effects of respiratory motion on stone comminution in vitro. The Journal of the Acoustical Society of America. 129: 2376-2376. DOI: 10.1121/1.3587695 |
0.329 |
|
2010 |
Esch E, Simmons WN, Sankin G, Cocks HF, Preminger GM, Zhong P. A simple method for fabricating artificial kidney stones of different physical properties. Urological Research. 38: 315-9. PMID 20652562 DOI: 10.1007/S00240-010-0298-X |
0.345 |
|
2010 |
Qin J, Simmons WN, Sankin G, Zhong P. Effect of lithotripter focal width on stone comminution in shock wave lithotripsy. The Journal of the Acoustical Society of America. 127: 2635-45. PMID 20370044 DOI: 10.1121/1.3308409 |
0.376 |
|
2010 |
Sankin G, Yuan F, Zhong P. Controllable plasma membrane poration by pulsing tandem microbubble. Journal of the Acoustical Society of America. 127: 1941-1941. DOI: 10.1121/1.3384891 |
0.34 |
|
2010 |
Smith N, Simmons WN, Sankin G, Zhong P. A new acoustic lens design for electromagnetic shock wave lithotripters. The Journal of the Acoustical Society of America. 127: 1761-1761. DOI: 10.1121/1.3383743 |
0.41 |
|
2010 |
Lipkin M, Zilberman D, Simmons N, Esch E, Preminger G, Zhong P. 1812 IMPROVED STONE PHANTOMS FOR SHOCK WAVE LITHOTRIPSY Journal of Urology. 183. DOI: 10.1016/j.juro.2010.02.1737 |
0.331 |
|
2009 |
Sankin G, Yuan F, Zhong P. Interaction of single biological cell with tandem microbubbles in microfluidics. Journal of the Acoustical Society of America. 125: 2649-2649. DOI: 10.1121/1.4784137 |
0.323 |
|
2008 |
Sankin GN, Zhou Y, Zhong P. Focusing of shock waves induced by optical breakdown in water. The Journal of the Acoustical Society of America. 123: 4071-81. PMID 18537359 DOI: 10.1121/1.2903865 |
0.454 |
|
2008 |
Sankin G, Yuan F, Zhong P. Damage to single biological cells induced by laser‐induced tandem microbubbles The Journal of the Acoustical Society of America. 123: 3561-3561. DOI: 10.1121/1.2934603 |
0.329 |
|
2007 |
Iloreta JI, Zhou Y, Sankin GN, Zhong P, Szeri AJ. Assessment of shock wave lithotripters via cavitation potential. Physics of Fluids (Woodbury, N.Y. : 1994). 19: 86103. PMID 19865493 DOI: 10.1063/1.2760279 |
0.438 |
|
2007 |
Klaseboer E, Fong SW, Turangan CK, Khoo BC, Szeri AJ, Calvisi ML, Sankin GN, Zhong P. Interaction of lithotripter shockwaves with single inertial cavitation bubbles. Journal of Fluid Mechanics. 593: 33-56. PMID 19018296 DOI: 10.1017/S002211200700852X |
0.372 |
|
2007 |
Weizer AZ, Zhong P, Preminger GM. New concepts in shock wave lithotripsy. The Urologic Clinics of North America. 34: 375-82. PMID 17678987 DOI: 10.1016/J.Ucl.2007.07.002 |
0.435 |
|
2007 |
Fuh E, Haleblian GE, Norris RD, Albala WD, Simmons N, Zhong P, Preminger GM. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission. The Journal of Urology. 177: 1542-5. PMID 17382775 DOI: 10.1016/J.Juro.2006.11.078 |
0.329 |
|
2006 |
Sankin GN, Zhong P. Interaction between shock wave and single inertial bubbles near an elastic boundary Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 74: 046304. PMID 17155170 DOI: 10.1103/Physreve.74.046304 |
0.455 |
|
2006 |
Maloney ME, Marguet CG, Zhou Y, Kang DE, Sung JC, Springhart WP, Madden J, Zhong P, Preminger GM. Progressive increase of lithotripter output produces better in-vivo stone comminution. Journal of Endourology / Endourological Society. 20: 603-6. PMID 16999607 DOI: 10.1089/End.2006.20.603 |
0.344 |
|
2006 |
Zhou Y, Zhai L, Simmons R, Zhong P. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone. The Journal of the Acoustical Society of America. 120: 676-85. PMID 16938956 DOI: 10.1121/1.2214131 |
0.37 |
|
2006 |
Zhou Y, Zhong P. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter. The Journal of the Acoustical Society of America. 119: 3625-36. PMID 16838506 DOI: 10.1121/1.2195074 |
0.444 |
|
2006 |
Sankin G, Zhong P. Shock‐wave–inertial‐bubble interaction near an elastic boundary The Journal of the Acoustical Society of America. 120: 3201-3201. DOI: 10.1121/1.4788083 |
0.446 |
|
2005 |
Delvecchio FC, Brizuela RM, Khan SR, Byer K, Li Z, Zhong P, Preminger GM. Citrate and vitamin E blunt the shock wave-induced free radical surge in an in vitro cell culture model. Urological Research. 33: 448-52. PMID 16317535 DOI: 10.1007/S00240-005-0506-2 |
0.423 |
|
2005 |
Sankin GN, Simmons WN, Zhu SL, Zhong P. Shock wave interaction with laser-generated single bubbles. Physical Review Letters. 95: 34501-34501. PMID 16090745 DOI: 10.1103/Physrevlett.95.034501 |
0.456 |
|
2005 |
Marguet CG, Sung JC, Springhart WP, L'Esperance JO, Zhou S, Zhong P, Albala DM, Preminger GM. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser. The Journal of Urology. 173: 1797-800. PMID 15821590 DOI: 10.1097/01.Ju.0000154341.08206.69 |
0.306 |
|
2005 |
Zhong P, Zhou Y, Cocks FH, Marguet C, Preminger GM, Madden J. Tissue response to modified shock wave profiles The Journal of the Acoustical Society of America. 117: 2383-2383. DOI: 10.1121/1.4785659 |
0.377 |
|
2005 |
Maloney ME, Zhong P, Marguet CG, Zhou YF, Sung JC, Springhart WP, Sur RL, Scales CD, Norris RD, Cantor DA, Jones PJ, Preminger GM. 1108: Treatment Strategy Improves the in Vivo Stone Comminution Efficiency and Reduces Renal Tissue Injury During Shock Wave Lithotripsy The Journal of Urology. 173: 300-301. DOI: 10.1016/S0022-5347(18)35264-9 |
0.395 |
|
2004 |
Zhou Y, Cocks FH, Preminger GM, Zhong P. Innovations in shock wave lithotripsy technology: updates in experimental studies. The Journal of Urology. 172: 1892-8. PMID 15540748 DOI: 10.1097/01.Ju.0000142827.41910.A2 |
0.392 |
|
2004 |
Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. The Journal of Urology. 172: 349-54. PMID 15201809 DOI: 10.1097/01.Ju.0000132356.97888.8B |
0.427 |
|
2004 |
Zhu S, Dreyer T, Liebler M, Riedlinger R, Preminger GM, Zhong P. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode. Ultrasound in Medicine & Biology. 30: 675-82. PMID 15183234 DOI: 10.1016/J.Ultrasmedbio.2004.03.008 |
0.452 |
|
2004 |
Heimbach D, Kourambas J, Zhong P, Jacobs J, Hesse A, Mueller SC, Delvecchio FC, Cocks FH, Preminger GM. The use of chemical treatments for improved comminution of artificial stones. The Journal of Urology. 171: 1797-801. PMID 15076279 DOI: 10.1097/01.Ju.0000118962.31123.Fd |
0.362 |
|
2004 |
Zhai L, Zhou Y, Zhong P. Dosimetry measurement of HIFU field using a fiber‐optical probe hydrophone Journal of the Acoustical Society of America. 115: 2491-2491. DOI: 10.1121/1.4782861 |
0.362 |
|
2003 |
Sheir KZ, Zabihi N, Lee D, Teichman JM, Rehman J, Sundaram CP, Heimbach D, Hesse A, Delvecchio F, Zhong P, Preminger GM, Clayman RV. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation. The Journal of Urology. 170: 2190-4. PMID 14634376 DOI: 10.1097/01.Ju.0000094188.69698.F8 |
0.43 |
|
2003 |
Delvecchio F, Auge BK, Munver R, Brown SA, Brizuela R, Zhong P, Preminger GM. Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point: the role of regional vasoconstriction. The Journal of Urology. 169: 1526-9. PMID 12629408 DOI: 10.1097/01.Ju.0000049648.13715.4B |
0.394 |
|
2003 |
Zhou Y, Zhong P. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry. The Journal of the Acoustical Society of America. 113: 586-97. PMID 12558294 DOI: 10.1121/1.1528174 |
0.478 |
|
2003 |
Zhou Y, Zhu S, Dreyer T, Liebler M, Zhong P. Comparison of acoustic fields produced by the original and upgraded HM‐3 lithotripter The Journal of the Acoustical Society of America. 114: 2466-2466. DOI: 10.1121/1.4809233 |
0.427 |
|
2003 |
Zhong P, Zhou Y, Zhu S, Cocks F, Preminger G. Innovations in shock wave lithotripsy technology The Journal of the Acoustical Society of America. 114: 2455-2455. DOI: 10.1121/1.4779572 |
0.441 |
|
2003 |
Szeri AJ, Zhong P, Blake JR. Lithotripter shock interaction with a bubble trapped in an elastic tube The Journal of the Acoustical Society of America. 114: 2452-2452. DOI: 10.1121/1.4779517 |
0.37 |
|
2002 |
Zhu S, Cocks FH, Preminger GM, Zhong P. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound in Medicine & Biology. 28: 661-71. PMID 12079703 DOI: 10.1016/S0301-5629(02)00506-9 |
0.428 |
|
2002 |
Munver R, Delvecchio FC, Kuo RL, Brown SA, Zhong P, Preminger GM. In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol. The Journal of Urology. 167: 327-34. PMID 11743351 |
0.315 |
|
2002 |
Zhu S, Dreyer T, Liebler M, Zhong P. Effects of an acoustic diode on lithotripter shock wave, cavitation, and stone fragmentation The Journal of the Acoustical Society of America. 111: 2461. DOI: 10.1121/1.4809137 |
0.397 |
|
2002 |
Zhong P, Zhu S, Zhou Y. The relative contribution of stress waves and cavitation to the overall success of stone comminution in shock wave lithotripsy Journal of the Acoustical Society of America. 112: 2289-2289. DOI: 10.1121/1.4779198 |
0.451 |
|
2002 |
Zhou Y, Auge B, Preminger GM, Zhong P. Reduction of tissue injury without compromising stone comminution in shock wave lithotripsy The Journal of the Acoustical Society of America. 111: 2461. DOI: 10.1121/1.4778492 |
0.429 |
|
2002 |
MUNVER R, DELVECCHIO FC, KUO RL, BROWN SA, ZHONG P, PREMINGER GM. IN VIVO ASSESSMENT OF FREE RADICAL ACTIVITY DURING SHOCK WAVE LITHOTRIPSY USING A MICRODIALYSIS SYSTEM: THE RENOPROTECTIVE ACTION OF ALLOPURINOL Journal of Urology. 167: 327-334. DOI: 10.1016/S0022-5347(05)65463-8 |
0.44 |
|
2002 |
Zhou YF, Zhong P. Optimization of lithotripter waveform to reduce tissue injury without compromising stone comminution Annual International Conference of the Ieee Engineering in Medicine and Biology - Proceedings. 3: 1795-1796. |
0.301 |
|
2001 |
Zhong P, Zhou Y. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: Methodology and in vitro experiments Journal of the Acoustical Society of America. 110: 3283-3291. PMID 11785829 DOI: 10.1121/1.1416906 |
0.486 |
|
2001 |
Xi X, Zhong P. Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy. The Journal of the Acoustical Society of America. 109: 1226-39. PMID 11303936 DOI: 10.1121/1.1349183 |
0.598 |
|
2001 |
Zhong P, Zhou Y, Zhu S. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound in Medicine & Biology. 27: 119-34. PMID 11295278 DOI: 10.1016/S0301-5629(00)00322-7 |
0.426 |
|
2001 |
Zhong P, Zhou Y. Suppression of large intraluminal bubble expansion in SWL Journal of the Acoustical Society of America. 109: 2481-2481. DOI: 10.1121/1.4744818 |
0.428 |
|
2001 |
Auge B, Munver R, Kourambas J, Preminger G, Zhong P. In vivo quantitation of regional versus systemic SWL‐induced free‐radical activity The Journal of the Acoustical Society of America. 109: 2480-2480. DOI: 10.1121/1.4744815 |
0.321 |
|
2000 |
Brown SA, Munver R, Delvecchio FC, Kuo RL, Zhong P, Preminger GM. Microdialysis assessment of shock wave lithotripsy-induced renal injury. Urology. 56: 364-8. PMID 10962295 DOI: 10.1016/S0090-4295(00)00694-4 |
0.378 |
|
2000 |
Xi X, Zhong P. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments. Ultrasound in Medicine & Biology. 26: 457-67. PMID 10773377 DOI: 10.1016/S0301-5629(99)00124-6 |
0.628 |
|
2000 |
Zhong P, Zhou Y, Zhu S. Dynamics of lithotripter shock‐wave‐induced bubble oscillation in constrained media Journal of the Acoustical Society of America. 107: 2838-2838. DOI: 10.1121/1.429163 |
0.348 |
|
2000 |
HEIMBACH D, MUNVER R, ZHONG P, JACOBS J, HESSE A, MÜLLER S, PREMINGER G. ACOUSTIC AND MECHANICAL PROPERTIES OF ARTIFICIAL STONES IN COMPARISON TO NATURAL KIDNEY STONES Journal of Urology. 164: 537-544. DOI: 10.1016/S0022-5347(05)67419-8 |
0.336 |
|
1999 |
Zhong P, Xi X, Zhu S, Cocks FH, Preminger GM. Recent developments in SWL physics research. Journal of Endourology / Endourological Society. 13: 611-7. PMID 10608511 DOI: 10.1089/End.1999.13.611 |
0.547 |
|
1999 |
Zhu S, Zhong P. Shock wave-inertial microbubble interaction: A theoretical study based on the Gilmore formulation for bubble dynamics Journal of the Acoustical Society of America. 106: 3024-3033. PMID 10573912 DOI: 10.1121/1.428122 |
0.461 |
|
1999 |
Heimbach D, Jacobs D, Hesse A, Müller SC, Zhong P, Preminger GM. How to improve lithotripsy and chemolitholysis of brushite-stones: an in vitro study. Urological Research. 27: 266-271. PMID 10460897 DOI: 10.1007/S002400050121 |
0.435 |
|
1999 |
Zhong P, Lin H, Xi X, Zhu S, Bhogte ES. Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study. The Journal of the Acoustical Society of America. 105: 1997-2009. PMID 10089617 DOI: 10.1121/1.426733 |
0.628 |
|
1999 |
Zhong P, Xi X, Zhu S, Lin H. Shock wave–inertial microbubble interaction The Journal of the Acoustical Society of America. 105: 1268-1268. DOI: 10.1121/1.426064 |
0.613 |
|
1999 |
Zhong P, Xi X. Controlled and forced collapse of inertial cavitation bubbles during SWL The Journal of the Acoustical Society of America. 105: 1268-1268. DOI: 10.1121/1.426063 |
0.404 |
|
1999 |
Munver R, Delvecchio FC, Kuo RL, Brown SA, Zhong P, Preminger GM. Microdialysis Analysis Of Free Radical Activity Following Shock Wave Lithotripsy The Journal of Urology. 252. DOI: 10.1097/00005392-199904020-00010 |
0.398 |
|
1998 |
Zhong P, Cioanta I, Zhu S, Cocks FH, Preminger GM. Effects of tissue constraint on shock wave-induced bubble expansion in vivo Journal of the Acoustical Society of America. 104: 3126-3129. PMID 9821353 DOI: 10.1121/1.423905 |
0.432 |
|
1998 |
Zhong P, Tong HL, Cocks FH, Pearle MS, Preminger GM. Transient cavitation and acoustic emission produced by different laser lithotripters Journal of Endourology. 12: 371-378. PMID 9726407 DOI: 10.1089/End.1998.12.371 |
0.313 |
|
1998 |
Teh CL, Zhong P, Preminger GM. Laboratory and clinical assessment of pneumatically driven intracorporeal lithotripsy. Journal of Endourology. 12: 163-9. PMID 9607444 DOI: 10.1089/End.1998.12.163 |
0.308 |
|
1997 |
Zhong P, Cocks FH, Cioanta I, Preminger GM. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy Journal of Urology. 158: 2323-2328. PMID 9366384 DOI: 10.1016/S0022-5347(01)68243-0 |
0.477 |
|
1997 |
Zhong P, Cioanta I, Cocks FH, Preminger GM. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy Journal of the Acoustical Society of America. 101: 2940-2950. PMID 9165740 DOI: 10.1121/1.418522 |
0.414 |
|
1997 |
Zhong P, Tong HL, Cocks FH, Preminger GM. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy Journal of Endourology. 11: 55-61. PMID 9048300 DOI: 10.1089/End.1997.11.55 |
0.352 |
|
1994 |
Zhong P, Preminger GM. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy Journal of Endourology. 8: 263-268. PMID 7981735 DOI: 10.1089/End.1994.8.263 |
0.348 |
|
1993 |
Zhong P, Chuong CJ, Preminger GM. Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy. The Journal of the Acoustical Society of America. 94: 29-36. PMID 8354759 DOI: 10.1121/1.407088 |
0.45 |
|
1993 |
Zhong P, Chuong CJ. Propagation of shock waves in elastic solids caused by cavitation microjet impact. I: Theoretical formulation Journal of the Acoustical Society of America. 94: 19-28. PMID 8354758 DOI: 10.1121/1.407077 |
0.433 |
|
1993 |
Chuong CJ, Zhong P, Preminger GM. Acoustic and mechanical properties of renal calculi: Implications in shock wave lithotripsy Journal of Endourology. 7: 437-444. PMID 8124332 DOI: 10.1089/End.1993.7.437 |
0.444 |
|
1993 |
Zhong P, Chuong CJ, Preminger GM. Characterization of fracture toughness of renal calculi using a microindentation technique Journal of Materials Science Letters. 12: 1460-1462. DOI: 10.1007/Bf00591608 |
0.338 |
|
1992 |
Chuong CJC, Zhong P, Premincer GM. A comparison of stone damage caused by different modes of shock wave generation Journal of Urology. 148: 200-205. PMID 1613869 DOI: 10.1016/S0022-5347(17)36553-9 |
0.414 |
|
1992 |
Zhong P, Chuong CJ. Propagation of shock waves in renal calculi caused by the impingements of cavitation microjets American Society of Mechanical Engineers, Bioengineering Division (Publication) Bed. 22: 63-66. |
0.333 |
|
Show low-probability matches. |