Year |
Citation |
Score |
2020 |
West D, Taylor JA, Krupenkin T. Alternating current liquid metal vortex magnetohydrodynamic generator Energy Conversion and Management. 223: 113223. DOI: 10.1016/J.Enconman.2020.113223 |
0.384 |
|
2019 |
Panchadar K, West D, Taylor JA, Krupenkin T. Mechanical energy harvesting using a liquid metal vortex magnetohydrodynamic generator Applied Physics Letters. 114: 93901. DOI: 10.1063/1.5078384 |
0.378 |
|
2017 |
Hsu TH, Taylor JA, Krupenkin TN. Energy harvesting from aperiodic low-frequency motion using reverse electrowetting. Faraday Discussions. PMID 28443836 DOI: 10.1039/C6Fd00253F |
0.369 |
|
2015 |
Hsu TH, Manakasettharn S, Taylor JA, Krupenkin T. Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting. Scientific Reports. 5: 16537. PMID 26567850 DOI: 10.1038/Srep16537 |
0.67 |
|
2014 |
Manakasettharn S, Hsu TH, Taylor JA, Krupenkin T. Interplay between iridescent and non-iridescent coloration in bio-inspired electrically-tunable nanostructures Optical Materials Express. 4: 681-688. DOI: 10.1364/Ome.4.000681 |
0.705 |
|
2012 |
Manakasettharn S, Hsu TH, Myhre G, Pau S, Taylor JA, Krupenkin T. Transparent and superhydrophobic Ta2O5 nanostructured thin films Optical Materials Express. 2: 214-221. DOI: 10.1364/Ome.2.000214 |
0.686 |
|
2011 |
Bahadur V, Mishchenko L, Hatton B, Taylor JA, Aizenberg J, Krupenkin T. Predictive model for ice formation on superhydrophobic surfaces. Langmuir : the Acs Journal of Surfaces and Colloids. 27: 14143-50. PMID 21899285 DOI: 10.1021/La200816F |
0.323 |
|
2011 |
Krupenkin T, Taylor JA. Reverse electrowetting as a new approach to high-power energy harvesting. Nature Communications. 2: 448. PMID 21863015 DOI: 10.1038/Ncomms1454 |
0.337 |
|
2011 |
Manakasettharn S, Taylor JA, Krupenkin T. Electrowetting-controlled bio-inspired artificial iridophores Proceedings of Spie - the International Society For Optical Engineering. 8097. DOI: 10.1117/12.893524 |
0.721 |
|
2011 |
Manakasettharn S, Ashley Taylor J, Krupenkin TN. Bio-inspired artificial iridophores based on capillary origami: Fabrication and device characterization Applied Physics Letters. 99. DOI: 10.1063/1.3646394 |
0.712 |
|
2010 |
Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. Acs Nano. 4: 7699-707. PMID 21062048 DOI: 10.1021/Nn102557P |
0.326 |
|
2009 |
Bucaro MA, Kolodner PR, Taylor JA, Sidorenko A, Aizenberg J, Krupenkin TN. Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled Janus tiles. Langmuir : the Acs Journal of Surfaces and Colloids. 25: 3876-9. PMID 19708158 DOI: 10.1021/La803537V |
0.513 |
|
2009 |
Wang EN, Bucaro MA, Taylor JA, Kolodner P, Aizenberg J, Krupenkin T. Droplet mixing using electrically tunable superhydrophobic nanostructured surfaces Microfluidics and Nanofluidics. 7: 137-140. DOI: 10.1007/S10404-008-0364-7 |
0.375 |
|
2008 |
Ahuja A, Taylor JA, Lifton V, Sidorenko AA, Salamon TR, Lobaton EJ, Kolodner P, Krupenkin TN. Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir : the Acs Journal of Surfaces and Colloids. 24: 9-14. PMID 17929955 DOI: 10.1021/La702327Z |
0.374 |
|
2008 |
Lifton VA, Taylor JA, Vyas B, Kolodner P, Cirelli R, Basavanhally N, Papazian A, Frahm R, Simon S, Krupenkin T. Superhydrophobic membranes with electrically controllable permeability and their application to “smart” microbatteries Applied Physics Letters. 93: 43112. DOI: 10.1063/1.2965615 |
0.363 |
|
2008 |
Sidorenko A, Krupenkin T, Aizenberg J. Controlled switching of the wetting behavior of biomimetic surfaces with hydrogel-supported nanostructures Journal of Materials Chemistry. 18: 3841-3846. DOI: 10.1039/B805433A |
0.416 |
|
2008 |
Gnanappa AK, Slattery O, Peters F, O'Murchu C, O'Mathuna C, Fahey R, Taylor JA, Krupenkin TN. Factors influencing adhesion of fluorocarbon (FC) thin film on silicon substrate Thin Solid Films. 516: 5673-5680. DOI: 10.1016/J.Tsf.2007.07.124 |
0.389 |
|
2007 |
Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science (New York, N.Y.). 315: 487-90. PMID 17255505 DOI: 10.1126/Science.1135516 |
0.318 |
|
2006 |
Krupenkin T, Kolodner P, Taylor JA, Hodes M. Electrically tunable superhydrophobic nanostructured surfaces Proceedings of the 4th International Conference On Nanochannels, Microchannels and Minichannels, Icnmm2006. 2006: 1211-1220. DOI: 10.1002/Bltj.20111 |
0.302 |
|
2004 |
Krupenkin TN, Taylor JA, Schneider TM, Yang S. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir : the Acs Journal of Surfaces and Colloids. 20: 3824-7. PMID 15969363 DOI: 10.1021/La036093Q |
0.412 |
|
2003 |
Acharya BR, Krupenkin T, Ramachandran S, Wang Z, Huang CC, Rogers JA. Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics Applied Physics Letters. 83: 4912-4914. DOI: 10.1063/1.1633331 |
0.37 |
|
2003 |
Yang S, Krupenkin TN, Mach P, Chandross EA. Tunable and latchable liquid microlens with photopolymerizable components Advanced Materials. 15: 940-943. DOI: 10.1002/Adma.200304745 |
0.342 |
|
2002 |
Cattaneo F, Mach P, Hsieh J, Krupenkin T, Yang S, Rogers JA. Dynamic Tuning of Optical Waveguides with Electrowetting Pumps Mrs Proceedings. 741. DOI: 10.1557/Proc-741-J1.4 |
0.461 |
|
2002 |
Mach P, Krupenkin T, Yang S, Rogers JA. Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels Applied Physics Letters. 81: 202-204. DOI: 10.1063/1.1491608 |
0.395 |
|
Show low-probability matches. |