Wolfram Siede - Publications

Cell Biology and Genetics University of North Texas Health Science Center at Fort Worth 
Molecular Biology, Polymer Chemistry, Ophthalmology

60 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2013 Chatterjee N, Siede W. Replicating damaged DNA in eukaryotes. Cold Spring Harbor Perspectives in Biology. 5: a019836. PMID 24296172 DOI: 10.1101/cshperspect.a019836  0.36
2013 Jain D, Siede W. Rad5 template switch pathway of DNA damage tolerance determines synergism between cisplatin and NSC109268 in Saccharomyces cerevisiae. Plos One. 8: e77666. PMID 24130896 DOI: 10.1371/journal.pone.0077666  0.36
2013 Chatterjee N, Pabla R, Siede W. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications. 431: 270-3. PMID 23313845 DOI: 10.1016/j.bbrc.2012.12.119  0.36
2013 Siede W. Use of Midori Green for DNA content analysis by flow cytometry in budding yeast (Saccharomyces cerevisiae) Internet Journal of Microbiology. 12.  0.36
2012 Rozario D, Siede W. Saccharomyces cerevisiae Tel2 plays roles in TORC signaling and telomere maintenance that can be mutationally separated. Biochemical and Biophysical Research Communications. 417: 1182-7. PMID 22227188 DOI: 10.1016/j.bbrc.2011.12.103  0.36
2011 Kim E, Siede W. Phenotypes associated with Saccharomyces cerevisiae Hug1 protein, a putative negative regulator of dNTP Levels, reveal similarities and differences with sequence-related Dif1. Journal of Microbiology (Seoul, Korea). 49: 78-85. PMID 21369983 DOI: 10.1007/s12275-011-0200-8  0.36
2010 Shankar E, Basu C, Adkins B, Siede W, Basu A. NSC109268 potentiates cisplatin-induced cell death in a p53-independent manner. Journal of Molecular Signaling. 5: 4. PMID 20459745 DOI: 10.1186/1750-2187-5-4  0.36
2010 Jain D, Patel N, Shelton M, Basu A, Roque R, Siede W. Enhancement of cisplatin sensitivity by NSC109268 in budding yeast and human cancer cells is associated with inhibition of S-phase progression. Cancer Chemotherapy and Pharmacology. 66: 945-52. PMID 20101404 DOI: 10.1007/s00280-010-1246-8  0.36
2009 Kim E, Siede W. The available SRL3 deletion strain of Saccharomyces cerevisiae contains a truncation of DNA damage tolerance protein Mms2: Implications for Srl3 and Mms2 functions. The Internet Journal of Microbiology. 8: 8. PMID 24795789 DOI: 10.5580/42c  0.36
2009 Pawar V, Jingjing L, Patel N, Kaur N, Doetsch PW, Shadel GS, Zhang H, Siede W. Checkpoint kinase phosphorylation in response to endogenous oxidative DNA damage in repair-deficient stationary-phase Saccharomyces cerevisiae. Mechanisms of Ageing and Development. 130: 501-8. PMID 19540258 DOI: 10.1016/j.mad.2009.06.002  0.36
2009 Gong J, Siede W. SBF transcription factor complex positively regulates UV mutagenesis in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications. 379: 1009-14. PMID 19150335 DOI: 10.1016/j.bbrc.2009.01.012  0.36
2008 Pabla R, Rozario D, Siede W. Regulation of Saccharomyces cerevisiae DNA polymerase eta transcript and protein. Radiation and Environmental Biophysics. 47: 157-68. PMID 17874115 DOI: 10.1007/s00411-007-0132-1  0.36
2007 Bracesco N, Candreva EC, Keszenman D, Sánchez AG, Soria S, Dell M, Siede W, Nunes E. Roles of Saccharomyces cerevisiae RAD17 and CHK1 checkpoint genes in the repair of double-strand breaks in cycling cells. Radiation and Environmental Biophysics. 46: 401-7. PMID 17624540 DOI: 10.1007/s00411-007-0119-y  0.36
2006 Pabla R, Pawar V, Zhang H, Siede W. Characterization of checkpoint responses to DNA damage in Saccharomyces cerevisiae: basic protocols. Methods in Enzymology. 409: 101-17. PMID 16793397 DOI: 10.1016/S0076-6879(05)09006-3  0.36
2005 Kow YW, Bao G, Minesinger B, Jinks-Robertson S, Siede W, Jiang YL, Greenberg MM. Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae. Nucleic Acids Research. 33: 6196-202. PMID 16257982 DOI: 10.1093/nar/gki926  0.36
2005 Taylor SD, Zhang H, Eaton JS, Rodeheffer MS, Lebedeva MA, O'rourke TW, Siede W, Shadel GS. The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Molecular Biology of the Cell. 16: 3010-8. PMID 15829566 DOI: 10.1091/mbc.E05-01-0053  0.36
2004 Giannattasio M, Lazzaro F, Siede W, Nunes E, Plevani P, Muzi-Falconi M. DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells. Dna Repair. 3: 1591-9. PMID 15474420 DOI: 10.1016/j.dnarep.2004.06.019  0.36
2004 Evert BA, Salmon TB, Song B, Jingjing L, Siede W, Doetsch PW. Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. The Journal of Biological Chemistry. 279: 22585-94. PMID 15020594 DOI: 10.1074/jbc.M400468200  0.36
2004 Zhang H, Siede W. Analysis of the budding yeast Saccharomyces cerevisiae cell cycle by morphological criteria and flow cytometry. Methods in Molecular Biology (Clifton, N.J.). 241: 77-91. PMID 14970647  0.36
2003 Zhang H, Siede W. Validation of a novel assay for checkpoint responses: characterization of camptothecin derivatives in Saccharomyces cerevisiae. Mutation Research. 527: 37-48. PMID 12787912 DOI: 10.1016/S0027-5107(03)00074-5  0.36
2003 Zhang H, Taylor J, Siede W. Checkpoint arrest signaling in response to UV damage is independent of nucleotide excision repair in Saccharomyces cerevisiae. The Journal of Biological Chemistry. 278: 9382-7. PMID 12522147 DOI: 10.1074/jbc.M300061200  0.36
2002 Zhang H, Siede W. UV-induced T-->C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase eta in vivo. Nucleic Acids Research. 30: 1262-7. PMID 11861920  0.36
2001 Zhang H, Zhu Z, Vidanes G, Mbangkollo D, Liu Y, Siede W. Characterization of DNA Damage-stimulated Self-interaction of Saccharomyces cerevisiae Checkpoint Protein Rad17p Journal of Biological Chemistry. 276: 26715-26723. PMID 11356855 DOI: 10.1074/jbc.M103682200  0.36
2000 Liu Y, Vidanes G, Lin YC, Mori S, Siede W. Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest Molecular and General Genetics. 262: 1132-1146. PMID 10660074  0.36
1998 Roush AA, Suarez M, Friedberg EC, Radman M, Siede W. Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability Molecular and General Genetics. 257: 686-692. PMID 9604893 DOI: 10.1007/s004380050698  0.36
1996 Nunes E, Siede W. Hyperthermia and paraquat-induced G1 arrest in the yeast Saccharomyces cerevisiae is independent of the RAD9 gene Radiation and Environmental Biophysics. 35: 55-57. PMID 8907645 DOI: 10.1007/BF01211243  0.36
1996 Yang Y, Johnson AL, Johnston LH, Siede W, Friedberg EC, Ramachandran K, Kunz BA. A mutation in a Saccharomyces cerevisiae gene (RAD3) required for nucleotide excision repair and transcription increases the efficiency of mismatch correction. Genetics. 144: 459-66. PMID 8889512  0.36
1996 Siede W, Allen JB, Elledge SJ, Friedberg EC. The Saccharomyces cerevisiae MEC1 gene, which encodes a homolog of the human ATM gene product, is required for G1 arrest following radiation treatment Journal of Bacteriology. 178: 5841-5843. PMID 8824640  0.36
1996 Siede W, Friedl AA, Dianova I, Eckardt-Schupp F, Friedberg EC. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination Genetics. 142: 91-102. PMID 8770587  0.36
1996 Siede W, Nusspaumer G, Portillo V, Rodriguez R, Friedberg EC. Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae Nucleic Acids Research. 24: 1669-1675. PMID 8649984 DOI: 10.1093/nar/24.9.1669  0.36
1996 Wolter R, Siede W, Brendel M. Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links Molecular and General Genetics. 250: 162-168. PMID 8628215 DOI: 10.1007/s004380050063  0.36
1996 Sancar GB, Siede W, Van Zeeland AA. Repair and processing of DNA damage: A summary of recent progress Mutation Research - Dna Repair. 362: 127-146. PMID 8538644 DOI: 10.1016/0921-8777(95)00029-1  0.36
1995 Reagan MS, Pittenger C, Siede W, Friedberg EC. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene Journal of Bacteriology. 177: 364-371. PMID 7814325  0.36
1995 Siede W. Cell cycle arrest in response to DNA damage: lessons from yeast Mutation Research-Dna Repair. 337: 73-84. PMID 7565863 DOI: 10.1016/0921-8777(95)00023-D  0.36
1994 Bardwell AJ, Bardwell L, Wang Z, Siede W, Reagan MS, Tomkinson AE, Friedberg AS, Pittenger C, Feaver WJ, Svejstrup J, Kornberg RD, Friedberg EC. Recent insights on DNA repair. The mechanism of damaged nucleotide excision in eukaryotes and its relationship to other cellular processes Annals of the New York Academy of Sciences. 726: 281-291. PMID 8092684 DOI: 10.1111/j.1749-6632.1994.tb52829.x  0.36
1994 Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast Genes and Development. 8: 2401-2415. PMID 7958905  0.36
1994 Siede W, Friedberg AS, Dianova I, Friedberg EC. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents Genetics. 138: 271-281. PMID 7828811  0.36
1993 Siede W, Friedberg AS, Friedberg EC. Evidence that the rad1 and rad10 proteins of Saccharomyces cerevisiae participate as a complex in nucleotide excision repair of UV radiation damage Journal of Bacteriology. 175: 6345-6347. PMID 8407807  0.36
1993 Siede W, Friedberg AS, Friedberg EC. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America. 90: 7985-7989. PMID 8367452  0.36
1992 Siede W, Friedberg EC. Regulation of the yeast RAD2 gene DNA damage-dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival Mgg Molecular & General Genetics. 232: 247-256. PMID 1557031 DOI: 10.1007/BF00280003  0.36
1990 Siede W, Friedberg EC. Influence of DNA repair deficiencies on the UV sensitivity of yeast cells in different cell cycle stages Mutation Research Letters. 245: 287-292. PMID 2266980 DOI: 10.1016/0165-7992(90)90158-G  0.36
1990 Song JM, Montelone BA, Siede W, Friedberg EC. Effects of multiple yeast rad3 mutant alleles on UV sensitivity, mutability, and mitotic recombination Journal of Bacteriology. 172: 6620-6630. PMID 2174856  0.36
1989 Siede W, Robinson GW, Kalainov D, Malley T, Friedberg EC. Regulation of the RAD2 gene of Saccharomyces cerevisiae Molecular Microbiology. 3: 1697-1707. PMID 2695743 DOI: 10.1111/j.1365-2958.1989.tb00155.x  0.36
1988 Siede W. The RAD6 gene of yeast: A link between DNA repair, chromosome structure and protein degradation? Radiation and Environmental Biophysics. 27: 277-286. PMID 2852379 DOI: 10.1007/BF01209756  0.36
1987 Eckardt-Schupp F, Siede W, Game JC. The RAD24 (= R(S1)) gene product of Saccharomyces cerevisiae participates in two different pathways of DNA repair Genetics. 115: 83-90. PMID 3549445  0.36
1987 Siede W, Eckardt-schupp F. Reply: U.V. Mutagenesis in yeast and Escherichia coli Mutagenesis. 2: 315. PMID 3325763 DOI: 10.1093/mutage/2.4.315  0.36
1987 Fleer R, Siede W, Friedberg EC. Mutational inactivation of the Saccharomyces cerevisiae RAD4 gene in Escherichia coli Journal of Bacteriology. 169: 4884-4892. PMID 2822652  0.36
1986 Siede W, Eckardt F. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae - III. Dose-response pattern of mutation induction in UV-irradiated rev2ts cells Mgg Molecular & General Genetics. 202: 68-74. PMID 3515129 DOI: 10.1007/BF00330519  0.36
1986 Siede W, Eckardt-schupp F. A mismatch repair-based model can explain some features of U.V. Mutagenesis in yeast Mutagenesis. 1: 471-474. PMID 3331686 DOI: 10.1093/mutage/1.6.471  0.36
1986 Siede W, Eckardt-Schupp F. DNA repair genes of Saccharomyces cerevisiae: complementing rad4 and rev2 mutations by plasmids which cannot be propagated in Escherichia coli Current Genetics. 11: 205-210. PMID 3329049 DOI: 10.1007/BF00420608  0.36
1986 Siede W, Eckardt F. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae - IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair Current Genetics. 10: 871-878. PMID 3329036 DOI: 10.1007/BF00398283  0.36
1985 Eckardt F, Siede W. Mutagen testing with yeast Basic Life Sciences. 34: 305-322. PMID 3904715  0.36
1985 Siede W, Obermaier S, Eckardt F. Influence of different inhibitors on the activity of the RAD54 dependent step of DNA repair in Saccharomyces cerevisiae Radiation and Environmental Biophysics. 24: 1-7. PMID 3883395 DOI: 10.1007/BF01212648  0.36
1984 Siede W, Eckardt F. Inducibility of error-prone DNA repair in yeast? Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 129: 3-11. PMID 6387467 DOI: 10.1016/0027-5107(84)90116-7  0.36
1984 Siede W, Eckardt F. Indications for an inducible component of error-prone DNA repair in yeast British Journal of Cancer. 49: 103-106. PMID 6365134  0.36
1983 Siede W, Eckardt F, Brendel M. Analysis of mutagenic DNA repair in a thermoconditional repair mutant of Saccharomyces cerevisiae - II. Influence of cycloheximide on UV-irradiated exponentially growing rev2ts cells Mgg Molecular & General Genetics. 190: 413-416. PMID 6348480 DOI: 10.1007/BF00331069  0.36
1983 Siede W, Eckardt F, Brendel M. Analysis of mutagenic DNA repair in a thermoconditional repair mutant of Saccharomyces cerevisiae - I. Influence of cycloheximide on UV-irradiated stationary phase rev2ts cells Mgg Molecular & General Genetics. 190: 406-412. PMID 6348479 DOI: 10.1007/BF00331068  0.36
1982 Siede W, Brendel M. Interactions among genes controlling sensitivity to radiation (RAD) and to alkylation by nitrogen mustard (SNM) in yeast Current Genetics. 5: 33-38. DOI: 10.1007/BF00445738  0.36
1981 Ruhland A, Haase E, Siede W, Brendel M. Isolation of yeast mutants sensitive to the bifunctional alkylating agent nitrogen mustard Mgg Molecular & General Genetics. 181: 346-351. PMID 7017347 DOI: 10.1007/BF00425609  0.36
1981 Siede W, Brendel M. Isolation and characterization of yeast mutants with thermoconditional sensitivity to the bifunctional alkylating agent nitrogen mustard Current Genetics. 4: 145-149. DOI: 10.1007/BF00365693  0.36
Show low-probability matches.