cached image

Lorraine S. Symington - Publications

Affiliations: 
Columbia University, New York, NY 
Area:
Genetics and biochemistry of DNA recombination and repair in yeast
Website:
http://www.microbiology.columbia.edu/faculty/symington.html

112 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Meir A, Raina VB, Rivera CE, Marie L, Symington LS, Greene EC. The separation pin distinguishes the pro- and anti-recombinogenic functions of Saccharomyces cerevisiae Srs2. Nature Communications. 14: 8144. PMID 38065943 DOI: 10.1038/s41467-023-43918-4  0.43
2023 Al-Zain AM, Nester MR, Ahmed I, Symington LS. Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ-dependent mechanism. Nature Communications. 14: 7020. PMID 37919272 DOI: 10.1038/s41467-023-42640-5  0.511
2023 Kimble MT, Johnson MJ, Nester MR, Symington LS. Long-range DNA end resection supports homologous recombination by checkpoint activation rather than extensive homology generation. Elife. 12. PMID 37387287 DOI: 10.7554/eLife.84322  0.593
2023 Gnügge R, Reginato G, Cejka P, Symington LS. Sequence and chromatin features guide DNA double-strand break resection initiation. Molecular Cell. PMID 36917982 DOI: 10.1016/j.molcel.2023.02.010  0.576
2023 Al-Zain A, Nester MR, Symington LS. Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ and Rad51-dependent mechanism. Biorxiv : the Preprint Server For Biology. PMID 36747747 DOI: 10.1101/2023.01.24.525421  0.522
2022 Marie L, Symington LS. Mechanism for inverted-repeat recombination induced by a replication fork barrier. Nature Communications. 13: 32. PMID 35013185 DOI: 10.1038/s41467-021-27443-w  0.508
2021 Cejka P, Symington LS. DNA End Resection: Mechanism and Control. Annual Review of Genetics. 55: 285-307. PMID 34813349 DOI: 10.1146/annurev-genet-071719-020312  0.589
2021 Gnügge R, Symington LS. DNA end resection during homologous recombination. Current Opinion in Genetics & Development. 71: 99-105. PMID 34329854 DOI: 10.1016/j.gde.2021.07.004  0.525
2021 Al-Zain AM, Symington LS. The dark side of homology-directed repair. Dna Repair. 106: 103181. PMID 34311272 DOI: 10.1016/j.dnarep.2021.103181  0.389
2021 Sanford EJ, Comstock WJ, Faça VM, Vega SC, Gnügge R, Symington LS, Smolka MB. Phosphoproteomics reveals a distinctive Mec1/ATR signaling response upon DNA end hyper-resection. The Embo Journal. e104566. PMID 33764556 DOI: 10.15252/embj.2020104566  0.513
2021 Roy U, Kwon Y, Marie L, Symington L, Sung P, Lisby M, Greene EC. The Rad51 paralog complex Rad55-Rad57 acts as a molecular chaperone during homologous recombination. Molecular Cell. PMID 33421364 DOI: 10.1016/j.molcel.2020.12.019  0.457
2021 Epshtein A, Symington LS, Klein HL. Intrachromosomal Recombination in Yeast. Methods in Molecular Biology (Clifton, N.J.). 2153: 193-200. PMID 32840781 DOI: 10.1007/978-1-0716-0644-5_14  0.674
2020 Stivison EA, Young KJ, Symington LS. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres. Nucleic Acids Research. PMID 33264397 DOI: 10.1093/nar/gkaa1081  0.816
2020 Gnügge R, Symington LS. Efficient DNA double-strand break formation at single or multiple defined sites in the Saccharomyces cerevisiae genome. Nucleic Acids Research. PMID 33053188 DOI: 10.1093/nar/gkaa833  0.453
2019 Yu TY, Garcia VE, Symington LS. CDK and Mec1/Tel1-catalyzed phosphorylation of Sae2 regulate different responses to DNA damage. Nucleic Acids Research. PMID 31552432 DOI: 10.1093/Nar/Gkz814  0.555
2019 Donnianni RA, Zhou ZX, Lujan SA, Al-Zain A, Garcia V, Glancy E, Burkholder AB, Kunkel TA, Symington LS. DNA Polymerase Delta Synthesizes Both Strands during Break-Induced Replication. Molecular Cell. PMID 31495565 DOI: 10.1016/J.Molcel.2019.07.033  0.658
2019 Klein HL, Symington LS. Recognition for Discoveries in DNA Repair. The New England Journal of Medicine. 381: 677-679. PMID 31412183 DOI: 10.1056/NEJMcibr1907358  0.75
2019 Steinfeld JB, Beláň O, Kwon Y, Terakawa T, Al-Zain A, Smith MJ, Crickard JB, Qi Z, Zhao W, Rothstein R, Symington LS, Sung P, Boulton SJ, Greene EC. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes & Development. PMID 31371435 DOI: 10.1101/Gad.328062.119  0.447
2019 Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, ... ... Symington LS, et al. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial Cell (Graz, Austria). 6: 1-64. PMID 30652105 DOI: 10.15698/Mic2019.01.664  0.801
2018 Yu TY, Kimble MT, Symington LS. Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection. Proceedings of the National Academy of Sciences of the United States of America. PMID 30510002 DOI: 10.1073/Pnas.1816539115  0.673
2018 Oh J, Symington LS. Role of the Mre11 Complex in Preserving Genome Integrity. Genes. 9. PMID 30501098 DOI: 10.3390/Genes9120589  0.627
2018 Oh J, Lee SJ, Rothstein R, Symington LS. Xrs2 and Tel1 Independently Contribute to MR-Mediated DNA Tethering and Replisome Stability. Cell Reports. 25: 1681-1692.e4. PMID 30428339 DOI: 10.1016/J.Celrep.2018.10.030  0.595
2018 Gnügge R, Oh J, Symington LS. Processing of DNA Double-Strand Breaks in Yeast. Methods in Enzymology. 600: 1-24. PMID 29458754 DOI: 10.1016/Bs.Mie.2017.11.007  0.655
2017 Gnügge R, Symington LS. Keeping it real: MRX-Sae2 clipping of natural substrates. Genes & Development. 31: 2311-2312. PMID 29352017 DOI: 10.1101/Gad.310771.117  0.626
2016 Ruff P, Donnianni RA, Glancy E, Oh J, Symington LS. RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication. Cell Reports. 17: 3359-3368. PMID 28009302 DOI: 10.1016/J.Celrep.2016.12.003  0.701
2016 Ciccia A, Symington LS. Stressing Out About RAD52. Molecular Cell. 64: 1017-1019. PMID 27984741 DOI: 10.1016/J.Molcel.2016.11.036  0.467
2016 Oh J, Al-Zain A, Cannavo E, Cejka P, Symington LS. Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex. Molecular Cell. PMID 27746018 DOI: 10.1016/J.Molcel.2016.09.011  0.518
2016 Symington LS. Mechanism and regulation of DNA end resection in eukaryotes. Critical Reviews in Biochemistry and Molecular Biology. 1-18. PMID 27098756 DOI: 10.3109/10409238.2016.1172552  0.656
2015 Deng SK, Yin Y, Petes TD, Symington LS. Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification. Molecular Cell. 60: 500-8. PMID 26545079 DOI: 10.1016/J.Molcel.2015.09.027  0.778
2015 Sfeir A, Symington LS. Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends in Biochemical Sciences. 40: 701-14. PMID 26439531 DOI: 10.1016/J.Tibs.2015.08.006  0.533
2015 Chen H, Donnianni RA, Handa N, Deng SK, Oh J, Timashev LA, Kowalczykowski SC, Symington LS. Sae2 promotes DNA damage resistance by removing the Mre11-Rad50-Xrs2 complex from DNA and attenuating Rad53 signaling. Proceedings of the National Academy of Sciences of the United States of America. 112: E1880-7. PMID 25831494 DOI: 10.1073/Pnas.1503331112  0.712
2015 Deng SK, Chen H, Symington LS. Replication protein A prevents promiscuous annealing between short sequence homologies: Implications for genome integrity. Bioessays : News and Reviews in Molecular, Cellular and Developmental Biology. 37: 305-13. PMID 25400143 DOI: 10.1002/Bies.201400161  0.681
2014 Symington LS, Rothstein R, Lisby M. Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics. 198: 795-835. PMID 25381364 DOI: 10.1534/Genetics.114.166140  0.577
2014 Symington LS. DNA repair: Making the cut. Nature. 514: 39-40. PMID 25231858 DOI: 10.1038/Nature13751  0.65
2014 Lee AH, Symington LS, Fidock DA. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiology and Molecular Biology Reviews : Mmbr. 78: 469-86. PMID 25184562 DOI: 10.1128/Mmbr.00059-13  0.407
2014 Štafa A, Mikleni? M, Zunar B, Lisni? B, Symington LS, Svetec IK. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting. Dna Repair. 22: 12-23. PMID 25089886 DOI: 10.1016/J.Dnarep.2014.07.004  0.414
2014 Symington LS. End resection at double-strand breaks: mechanism and regulation. Cold Spring Harbor Perspectives in Biology. 6. PMID 25085909 DOI: 10.1101/Cshperspect.A016436  0.622
2014 Eissler CL, Mazón G, Powers BL, Savinov SN, Symington LS, Hall MC. The Cdk/cDc14 module controls activation of the Yen1 holliday junction resolvase to promote genome stability. Molecular Cell. 54: 80-93. PMID 24631283 DOI: 10.1016/J.Molcel.2014.02.012  0.607
2014 Deng SK, Gibb B, de Almeida MJ, Greene EC, Symington LS. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nature Structural & Molecular Biology. 21: 405-12. PMID 24608368 DOI: 10.1038/Nsmb.2786  0.688
2014 Stafa A, Donnianni RA, Timashev LA, Lam AF, Symington LS. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics. 196: 1017-28. PMID 24496010 DOI: 10.1534/Genetics.114.162297  0.569
2013 Mazón G, Symington LS. Mph1 and Mus81-Mms4 prevent aberrant processing of mitotic recombination intermediates. Molecular Cell. 52: 63-74. PMID 24119400 DOI: 10.1016/J.Molcel.2013.09.007  0.59
2013 Bernstein KA, Mimitou EP, Mihalevic MJ, Chen H, Sunjaveric I, Symington LS, Rothstein R. Resection activity of the Sgs1 helicase alters the affinity of DNA ends for homologous recombination proteins in Saccharomyces cerevisiae. Genetics. 195: 1241-51. PMID 24097410 DOI: 10.1534/Genetics.113.157370  0.849
2013 Donnianni RA, Symington LS. Break-induced replication occurs by conservative DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America. 110: 13475-80. PMID 23898170 DOI: 10.1073/Pnas.1309800110  0.648
2013 Chen H, Lisby M, Symington LS. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Molecular Cell. 50: 589-600. PMID 23706822 DOI: 10.1016/J.Molcel.2013.04.032  0.726
2013 Chen H, Symington LS. Overcoming the chromatin barrier to end resection. Cell Research. 23: 317-9. PMID 23147792 DOI: 10.1038/Cr.2012.148  0.704
2012 Mazón G, Lam AF, Ho CK, Kupiec M, Symington LS. The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nature Structural & Molecular Biology. 19: 964-71. PMID 22885325 DOI: 10.1038/Nsmb.2359  0.595
2012 Klein HL, Symington LS. Sgs1--the maestro of recombination. Cell. 149: 257-9. PMID 22500794 DOI: 10.1016/J.Cell.2012.03.020  0.649
2011 Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annual Review of Genetics. 45: 247-71. PMID 21910633 DOI: 10.1146/Annurev-Genet-110410-132435  0.569
2011 Mott C, Symington LS. RAD51-independent inverted-repeat recombination by a strand-annealing mechanism. Dna Repair. 10: 408-15. PMID 21317047 DOI: 10.1016/J.Dnarep.2011.01.007  0.757
2011 Mimitou EP, Symington LS. DNA end resection--unraveling the tail. Dna Repair. 10: 344-8. PMID 21227759 DOI: 10.1016/J.Dnarep.2010.12.004  0.853
2010 Ho CK, Mazón G, Lam AF, Symington LS. Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Molecular Cell. 40: 988-1000. PMID 21172663 DOI: 10.1016/J.Molcel.2010.11.016  0.476
2010 Mimitou EP, Symington LS. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. The Embo Journal. 29: 3358-69. PMID 20729809 DOI: 10.1038/Emboj.2010.193  0.82
2010 Mazón G, Mimitou EP, Symington LS. SnapShot: Homologous recombination in DNA double-strand break repair. Cell. 142: 646, 646.e1. PMID 20723763 DOI: 10.1016/J.Cell.2010.08.006  0.851
2010 Marrero VA, Symington LS. Extensive DNA end processing by exo1 and sgs1 inhibits break-induced replication. Plos Genetics. 6: e1001007. PMID 20628570 DOI: 10.1371/Journal.Pgen.1001007  0.838
2010 Symington LS. Initiation and completion of spontaneous mitotic recombination occur in different cell cycle phases. Proceedings of the National Academy of Sciences of the United States of America. 107: 8045-6. PMID 20418501 DOI: 10.1073/Pnas.1003050107  0.542
2009 Ho CK, Lam AF, Symington LS. Identification of nucleases and phosphatases by direct biochemical screen of the Saccharomyces cerevisiae proteome. Plos One. 4: e6993. PMID 19753119 DOI: 10.1371/Journal.Pone.0006993  0.428
2009 Klein HL, Symington LS. Breaking up just got easier to do. Cell. 138: 20-2. PMID 19596231 DOI: 10.1016/J.Cell.2009.06.039  0.562
2009 Mimitou EP, Symington LS. DNA end resection: many nucleases make light work. Dna Repair. 8: 983-95. PMID 19473888 DOI: 10.1016/J.Dnarep.2009.04.017  0.852
2009 Mimitou EP, Symington LS. Nucleases and helicases take center stage in homologous recombination. Trends in Biochemical Sciences. 34: 264-72. PMID 19375328 DOI: 10.1016/J.Tibs.2009.01.010  0.855
2009 Fung CW, Mozlin AM, Symington LS. Suppression of the double-strand-break-repair defect of the Saccharomyces cerevisiae rad57 mutant. Genetics. 181: 1195-206. PMID 19189942 DOI: 10.1534/Genetics.109.100842  0.764
2009 Smith CE, Lam AF, Symington LS. Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex. Molecular and Cellular Biology. 29: 1432-41. PMID 19139272 DOI: 10.1128/Mcb.01469-08  0.681
2008 Symington LS, Holloman WK. Resolving resolvases: the final act? Molecular Cell. 32: 603-4. PMID 19061635 DOI: 10.1016/J.Molcel.2008.11.011  0.32
2008 Malik PS, Symington LS. Rad51 gain-of-function mutants that exhibit high affinity DNA binding cause DNA damage sensitivity in the absence of Srs2. Nucleic Acids Research. 36: 6504-10. PMID 18927106 DOI: 10.1093/Nar/Gkn720  0.656
2008 Mimitou EP, Symington LS. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature. 455: 770-4. PMID 18806779 DOI: 10.1038/Nature07312  0.851
2008 Llorente B, Smith CE, Symington LS. Break-induced replication: what is it and what is it for? Cell Cycle (Georgetown, Tex.). 7: 859-64. PMID 18414031 DOI: 10.4161/Cc.7.7.5613  0.65
2008 Lam AF, Krogh BO, Symington LS. Unique and overlapping functions of the Exo1, Mre11 and Pso2 nucleases in DNA repair. Dna Repair. 7: 655-62. PMID 18295552 DOI: 10.1016/J.Dnarep.2007.12.014  0.629
2008 Mozlin AM, Fung CW, Symington LS. Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination. Genetics. 178: 113-26. PMID 18202362 DOI: 10.1534/Genetics.107.082677  0.745
2007 Smith CE, Llorente B, Symington LS. Template switching during break-induced replication. Nature. 447: 102-5. PMID 17410126 DOI: 10.1038/Nature05723  0.642
2006 Fung CW, Fortin GS, Peterson SE, Symington LS. The rad51-K191R ATPase-defective mutant is impaired for presynaptic filament formation. Molecular and Cellular Biology. 26: 9544-54. PMID 17030607 DOI: 10.1128/Mcb.00599-06  0.813
2006 Symington LS, Heyer WD. Some disassembly required: role of DNA translocases in the disruption of recombination intermediates and dead-end complexes. Genes & Development. 20: 2479-86. PMID 16980577 DOI: 10.1101/Gad.1477106  0.452
2005 Krogh BO, Llorente B, Lam A, Symington LS. Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity. Genetics. 171: 1561-70. PMID 16143598 DOI: 10.1534/Genetics.105.049478  0.647
2005 Symington LS. Focus on recombinational DNA repair. Embo Reports. 6: 512-7. PMID 15920531 DOI: 10.1038/Sj.Embor.7400438  0.705
2005 Langston LD, Symington LS. Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting. The Embo Journal. 24: 2214-23. PMID 15920474 DOI: 10.1038/Sj.Emboj.7600698  0.815
2004 Krogh BO, Symington LS. Recombination proteins in yeast. Annual Review of Genetics. 38: 233-71. PMID 15568977 DOI: 10.1146/Annurev.Genet.38.072902.091500  0.615
2004 Langston LD, Symington LS. Gene targeting in yeast is initiated by two independent strand invasions. Proceedings of the National Academy of Sciences of the United States of America. 101: 15392-7. PMID 15489271 DOI: 10.1073/Pnas.0403748101  0.81
2004 Llorente B, Symington LS. The Mre11 nuclease is not required for 5' to 3' resection at multiple HO-induced double-strand breaks. Molecular and Cellular Biology. 24: 9682-94. PMID 15485933 DOI: 10.1128/Mcb.24.21.9682-9694.2004  0.618
2004 Tran PT, Erdeniz N, Symington LS, Liskay RM. EXO1-A multi-tasking eukaryotic nuclease. Dna Repair. 3: 1549-59. PMID 15474417 DOI: 10.1016/J.Dnarep.2004.05.015  0.602
2004 Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, Rice PA. Crystal structure of a Rad51 filament. Nature Structural & Molecular Biology. 11: 791-6. PMID 15235592 DOI: 10.1038/Nsmb795  0.803
2004 Davis AP, Symington LS. RAD51-dependent break-induced replication in yeast. Molecular and Cellular Biology. 24: 2344-51. PMID 14993274 DOI: 10.1128/Mcb.24.6.2344-2351.2004  0.517
2004 Symington LS, Holloman WK. Molecular biology. New Year's resolution--resolving resolvases. Science (New York, N.Y.). 303: 184-5. PMID 14716002 DOI: 10.1126/Science.1093959  0.649
2003 Davis AP, Symington LS. The Rad52-Rad59 complex interacts with Rad51 and replication protein A. Dna Repair. 2: 1127-34. PMID 13679150 DOI: 10.1016/S1568-7864(03)00121-6  0.502
2002 Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiology and Molecular Biology Reviews : Mmbr. 66: 630-70, table of con. PMID 12456786 DOI: 10.1128/Mmbr.66.4.630-670.2002  0.659
2002 Morgan EA, Shah N, Symington LS. The requirement for ATP hydrolysis by Saccharomyces cerevisiae Rad51 is bypassed by mating-type heterozygosity or RAD54 in high copy. Molecular and Cellular Biology. 22: 6336-43. PMID 12192033 DOI: 10.1128/Mcb.22.18.6336-6343.2002  0.609
2002 Fortin GS, Symington LS. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes. The Embo Journal. 21: 3160-70. PMID 12065428 DOI: 10.1093/Emboj/Cdf293  0.831
2001 Moreau S, Morgan EA, Symington LS. Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics. 159: 1423-33. PMID 11779786  0.47
2001 Davis AP, Symington LS. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics. 159: 515-25. PMID 11606529  0.624
2000 Kirkpatrick DT, Ferguson JR, Petes TD, Symington LS. Decreased meiotic intergenic recombination and increased meiosis I nondisjunction in exo1 mutants of Saccharomyces cerevisiae. Genetics. 156: 1549-57. PMID 11102356  0.752
2000 Symington LS, Kang LE, Moreau S. Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae. Nucleic Acids Research. 28: 4649-56. PMID 11095674 DOI: 10.1093/Nar/28.23.4649  0.563
2000 Kang LE, Symington LS. Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae. Molecular and Cellular Biology. 20: 9162-72. PMID 11094068 DOI: 10.1128/Mcb.20.24.9162-9172.2000  0.644
2000 Bärtsch S, Kang LE, Symington LS. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Molecular and Cellular Biology. 20: 1194-205. PMID 10648605 DOI: 10.1128/Mcb.20.4.1194-1205.2000  0.653
1999 Bai Y, Davis AP, Symington LS. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics. 153: 1117-30. PMID 10545446  0.444
1999 Moreau S, Ferguson JR, Symington LS. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Molecular and Cellular Biology. 19: 556-66. PMID 9858579 DOI: 10.1128/Mcb.19.1.556  0.584
1998 Symington LS. Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Research. 26: 5589-95. PMID 9837987 DOI: 10.1093/Nar/26.24.5589  0.549
1997 Fiorentini P, Huang KN, Tishkoff DX, Kolodner RD, Symington LS. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Molecular and Cellular Biology. 17: 2764-73. PMID 9111347 DOI: 10.1128/Mcb.17.5.2764  0.619
1996 Bai Y, Symington LS. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes & Development. 10: 2025-37. PMID 8769646 DOI: 10.1101/Gad.10.16.2025  0.542
1995 Rattray AJ, Symington LS. Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics. 139: 45-56. PMID 7705645  0.465
1995 Johnson RD, Symington LS. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Molecular and Cellular Biology. 15: 4843-50. PMID 7651402 DOI: 10.1128/Mcb.15.9.4843  0.645
1994 Huang KN, Symington LS. Mutation of the gene encoding protein kinase C 1 stimulates mitotic recombination in Saccharomyces cerevisiae. Molecular and Cellular Biology. 14: 6039-45. PMID 8065337 DOI: 10.1128/Mcb.14.9.6039  0.441
1994 Rattray AJ, Symington LS. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics. 138: 587-95. PMID 7851757  0.367
1993 Johnson RD, Symington LS. Crossed-stranded DNA structures for investigating the molecular dynamics of the Holliday junction. Journal of Molecular Biology. 229: 812-20. PMID 8445648 DOI: 10.1006/Jmbi.1993.1087  0.498
1993 Huang KN, Symington LS. A 5'-3' exonuclease from Saccharomyces cerevisiae is required for in vitro recombination between linear DNA molecules with overlapping homology. Molecular and Cellular Biology. 13: 3125-34. PMID 8388534 DOI: 10.1128/Mcb.13.6.3125  0.499
1991 Symington LS. Double-strand-break repair and recombination catalyzed by a nuclear extract of Saccharomyces cerevisiae. The Embo Journal. 10: 987-96. PMID 2009864  0.41
1991 Symington LS, Brown A, Oliver SG, Greenwell P, Petes TD. Genetic analysis of a meiotic recombination hotspot on chromosome III of Saccharomyces cerevisiae. Genetics. 128: 717-27. PMID 1840557  0.535
1991 Petes TD, Malone RE, Symington LS. 8 Recombination in Yeast Cold Spring Harbor Monograph Archive. 407-521. DOI: 10.1101/087969363.21A.407  0.664
1989 Petes TD, Detloff P, Jinks-Robertson S, Judd SR, Kupiec M, Nag D, Stapleton A, Symington LS, Vincent A, White M. Recombination in yeast and the recombinant DNA technology. Genome / National Research Council Canada = GéNome / Conseil National De Recherches Canada. 31: 536-40. PMID 2698829 DOI: 10.1139/G89-102  0.836
1988 Liebman SW, Symington LS, Petes TD. Mitotic recombination within the centromere of a yeast chromosome. Science (New York, N.Y.). 241: 1074-7. PMID 3137657 DOI: 10.1126/Science.3137657  0.621
1988 Symington LS, Petes TD. Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Molecular and Cellular Biology. 8: 595-604. PMID 2832729 DOI: 10.1128/Mcb.8.2.595  0.552
1988 Symington LS, Petes TD. Meiotic recombination within the centromere of a yeast chromosome. Cell. 52: 237-40. PMID 2830024 DOI: 10.1016/0092-8674(88)90512-0  0.564
1985 Symington LS, Morrison P, Kolodner R. Plasmid recombination intermediates generated in a Saccharomyces cerevisiae cell-free recombination system. Molecular and Cellular Biology. 5: 2361-8. PMID 3915541 DOI: 10.1128/Mcb.5.9.2361  0.525
1985 Symington LS, Kolodner R. Partial purification of an enzyme from Saccharomyces cerevisiae that cleaves Holliday junctions. Proceedings of the National Academy of Sciences of the United States of America. 82: 7247-51. PMID 3903750 DOI: 10.1073/Pnas.82.21.7247  0.563
1983 Kitts PA, Symington LS, Dyson P, Sherratt DJ. Transposon-encoded site-specific recombination: nature of the Tn3 DNA sequences which constitute the recombination site res. The Embo Journal. 2: 1055-60. PMID 6313351 DOI: 10.1002/J.1460-2075.1983.Tb01545.X  0.48
1982 Kitts P, Symington L, Burke M, Reed R, Sherratt D. Transposon-specified site-specific recombination. Proceedings of the National Academy of Sciences of the United States of America. 79: 46-50. PMID 6275390 DOI: 10.1073/Pnas.79.1.46  0.439
Show low-probability matches.