Year |
Citation |
Score |
2023 |
Puig-Saus C, Sennino B, Peng S, Wang CL, Pan Z, Yuen B, Purandare B, An D, Quach BB, Nguyen D, Xia H, Jilani S, Shao K, McHugh C, Greer J, ... ... Franzusoff A, et al. Neoantigen-targeted CD8 T cell responses with PD-1 blockade therapy. Nature. PMID 36890230 DOI: 10.1038/s41586-023-05787-1 |
0.335 |
|
2022 |
Foy SP, Jacoby K, Bota DA, Hunter T, Pan Z, Stawiski E, Ma Y, Lu W, Peng S, Wang CL, Yuen B, Dalmas O, Heeringa K, Sennino B, Conroy A, ... ... Franzusoff A, et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature. PMID 36356599 DOI: 10.1038/s41586-022-05531-1 |
0.336 |
|
2020 |
Cristea M, Chmielowski B, Funke R, Stallings-Schmitt T, Denker M, Frohlich M, Franzusoff A, Abedi M, Ejadi S. Abstract CT250: A Phase 1a/1b, open-label first-in-human study of the safety, tolerability, and feasibility of gene-edited autologous NeoTCR-T cells (NeoTCR-P1) administered to patients with locally advanced or metastatic solid tumors Cancer Research. 80. DOI: 10.1158/1538-7445.Am2020-Ct250 |
0.433 |
|
2020 |
Sennino B, Conroy A, Purandare B, Jacoby K, Dalmas O, Peng S, Franzusoff A, Mandl S. Abstract 895: Coexpression of MHC class I-restricted neoTCRs and ectopic CD8 receptors in precision genome engineered CD4 T cells significantly potentiates antigen-specific effector functions Immunology. 80: 895-895. DOI: 10.1158/1538-7445.Am2020-895 |
0.424 |
|
2020 |
Dalmas O, Pan Z, Shieh C, Xu A, Kwa J, Heeringa K, Ma Y, Collins J, An D, Peng S, Franzusoff A. Abstract 3253: A high-throughput platform to produce neoE-HLA libraries for capturing neoE-specific T cells from the peripheral blood of patients with solid tumors Immunology. DOI: 10.1158/1538-7445.Am2020-3253 |
0.39 |
|
2020 |
Jacoby K, Lu W, Nguyen D, Sennino B, Conroy A, Purandare B, Franzusoff A, Mandl S. Abstract 2192: Non-viral genome engineering method allows highly efficient, single-step removal and precise insertion of multiple large genes Immunology. 80: 2192-2192. DOI: 10.1158/1538-7445.Am2020-2192 |
0.402 |
|
2019 |
Peng S, Yuen B, Tan J, Yin F, Bao R, Pan Z, Dalmas O, An D, Quach B, Yi M, Bethune M, Mandl S, Walters M, Jaen J, Franzusoff A. Abstract 4042: Longitudinal monitoring of neoepitope-specific T cell repertoires in patient blood following cancer immunotherapy Cancer Research. DOI: 10.1158/1538-7445.Sabcs18-4042 |
0.367 |
|
2019 |
Jacoby K, Moot R, Lu W, Nguyen D, Sennino B, Conroy A, Purandare B, Litterman AJ, Urbinati F, Foy SP, Hunter T, Tai A, Bethune MT, Peng S, Dalmas O, ... Franzusoff A, et al. Abstract 4783: Highly efficient, non-viral precision genome engineering for the generation of personalized neoepitope-specific adoptive T cell therapies Cancer Research. 79: 4783-4783. DOI: 10.1158/1538-7445.Am2019-4783 |
0.423 |
|
2019 |
Peng S, Quach B, An D, Sandoval S, Bao R, Pan Z, Bethune M, Dalmas O, Yi M, Meadows C, Heeringa K, Guo L, yuen B, Sorfleet J, Jacoby K, ... ... Franzusoff A, et al. Abstract 1435: An ultra-sensitive and high-throughput technology (imPACT) for the identification and isolation of intrinsic and emergent neoepitope-specific T cells from the peripheral blood and TILs of cancer patients Cancer Research. 79: 1435-1435. DOI: 10.1158/1538-7445.Am2019-1435 |
0.447 |
|
2019 |
Sennino B, Conroy A, Purandare B, Litterman A, Jacoby K, Moot R, Lu W, Nguyen D, Urbinati F, Foy S, Hunter T, Dalmas O, Bethune M, Park T, Peng S, ... Franzusoff A, et al. Abstract 1433: NeoTCR-P1, a novel neoepitope-specific adoptive cell therapy, consists of T cells with ‘younger’ phenotypes that rapidly proliferate and kill target cells upon recognition of cognate antigen Cancer Research. 79: 1433-1433. DOI: 10.1158/1538-7445.Am2019-1433 |
0.469 |
|
2016 |
Foy SP, Mandl SJ, Dela Cruz T, Cote JJ, Gordon EJ, Trent E, Delcayre A, Breitmeyer J, Franzusoff A, Rountree RB. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Cancer Immunology, Immunotherapy : Cii. PMID 26961085 DOI: 10.1007/S00262-016-1816-7 |
0.465 |
|
2016 |
Foy SP, Sennino B, Dela Cruz T, Cote JJ, Gordon EJ, Kemp F, Xavier V, Franzusoff A, Rountree RB, Mandl SJ. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. Plos One. 11: e0150084. PMID 26910562 DOI: 10.1371/Journal.Pone.0150084 |
0.399 |
|
2015 |
Mandl SJ, Foy SP, Sennino B, dela Cruz T, Gordon E, Kemp F, Xavier V, Rountree RB, Franzusoff A. Anti-tumor efficacy and PD-L1 expression in the tumor microenvironment after poxvirus-based active immunotherapy and PD-1 blockade. Journal of Clinical Oncology. 33: 3079-3079. DOI: 10.1200/Jco.2015.33.15_Suppl.3079 |
0.332 |
|
2015 |
Sennino B, Foy SP, Rountree RB, Cruz Td, Gordon EJ, Xavier V, Kemp F, Franzusoff A, Breitmeyer J, Mandl SJ. Abstract LB-234: Poxvirus-based active immunotherapy synergizes with PD-1 plus LAG-3 immune checkpoint inhibition to enhance antitumor efficacy in preclinical models Cancer Research. 75. DOI: 10.1158/1538-7445.Am2015-Lb-234 |
0.376 |
|
2012 |
Bilusic M, Gulley JL, Hodge JW, Tsang K, Arlen PM, Heery CR, Rauckhorst M, McMahon S, Intrivici C, Ferrara TA, Cohn A, Apelian D, Franzusoff A, Guo Z, Schlom J, et al. A phase I trial of a recombinant CEA yeast-based vaccine targeting CEA-expressing cancers. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology. 30: 458. PMID 27983223 DOI: 10.1200/Jco.2012.30.4_Suppl.458 |
0.386 |
|
2010 |
Bui MR, Hodson V, King T, Leopold D, Dai S, Fiolkoski V, Oakes S, Duke R, Apelian D, Franzusoff A, DeGregori J. Mutation-specific control of BCR-ABL T315I positive leukemia with a recombinant yeast-based therapeutic vaccine in a murine model. Vaccine. 28: 6028-35. PMID 20619375 DOI: 10.1016/J.Vaccine.2010.06.085 |
0.365 |
|
2010 |
Boehm AL, Higgins J, Franzusoff A, Schlom J, Hodge JW. Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations. Cancer Immunology, Immunotherapy : Cii. 59: 397-408. PMID 19756595 DOI: 10.1007/S00262-009-0759-7 |
0.351 |
|
2010 |
Cereda V, Vergati M, Huen N, Bari MGd, Gulley JL, Franzusoff A, Schlom J, Tsang KY. Abstract 2405: Treatment of human dendritic cells with Saccharomyces cerevisiae (yeast) reduces number and function of regulatory T cells (Tregs) and enhances the ratio of antigen-specific effectors to Tregs Cancer Research. 70: 2405-2405. DOI: 10.1158/1538-7445.Am10-2405 |
0.428 |
|
2009 |
Remondo C, Cereda V, Mostböck S, Sabzevari H, Franzusoff A, Schlom J, Tsang KY. Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine. 27: 987-94. PMID 19110021 DOI: 10.1016/J.Vaccine.2008.12.002 |
0.407 |
|
2008 |
Wansley EK, Chakraborty M, Hance KW, Bernstein MB, Boehm AL, Guo Z, Quick D, Franzusoff A, Greiner JW, Schlom J, Hodge JW. Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clinical Cancer Research : An Official Journal of the American Association For Cancer Research. 14: 4316-25. PMID 18594015 DOI: 10.1158/1078-0432.Ccr-08-0393 |
0.431 |
|
2008 |
Bernstein MB, Chakraborty M, Wansley EK, Guo Z, Franzusoff A, Mostböck S, Sabzevari H, Schlom J, Hodge JW. Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine. 26: 509-21. PMID 18155327 DOI: 10.1016/J.Vaccine.2007.11.033 |
0.423 |
|
2007 |
Riemann H, Takao J, Shellman YG, Hines WA, Edwards CK, Franzusoff A, Norris DA, Fujita M. Generation of a prophylactic melanoma vaccine using whole recombinant yeast expressing MART-1. Experimental Dermatology. 16: 814-22. PMID 17845213 DOI: 10.1111/j.1600-0625.2007.00599.x |
0.306 |
|
2007 |
Haller AA, Lauer GM, King TH, Kemmler C, Fiolkoski V, Lu Y, Bellgrau D, Rodell TC, Apelian D, Franzusoff A, Duke RC. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and Core proteins. Vaccine. 25: 1452-63. PMID 17098335 DOI: 10.1016/J.Vaccine.2006.10.035 |
0.368 |
|
2007 |
Liu Y, Wang Q, Kleinschmidt-DeMasters BK, Franzusoff A, Ng KY, Lillehei KO. TGF-beta2 inhibition augments the effect of tumor vaccine and improves the survival of animals with pre-established brain tumors. Journal of Neuro-Oncology. 81: 149-62. PMID 16941073 DOI: 10.1007/S11060-006-9222-1 |
0.311 |
|
2005 |
Franzusoff A, Duke RC, King TH, Lu Y, Rodell TC. Yeasts encoding tumour antigens in cancer immunotherapy. Expert Opinion On Biological Therapy. 5: 565-75. PMID 15934834 DOI: 10.1517/14712598.5.4.565 |
0.374 |
|
2004 |
Lu Y, Bellgrau D, Dwyer-Nield LD, Malkinson AM, Duke RC, Rodell TC, Franzusoff A. Mutation-selective tumor remission with Ras-targeted, whole yeast-based immunotherapy. Cancer Research. 64: 5084-8. PMID 15289309 DOI: 10.1158/0008-5472.Can-04-1487 |
0.333 |
|
2004 |
Modiano JF, Sun J, Lang J, Vacano G, Patterson D, Chan D, Franzusoff A, Gianani R, Meech SJ, Duke R, Bellgrau D. Fas ligand-dependent suppression of autoimmunity via recruitment and subsequent termination of activated T cells. Clinical Immunology (Orlando, Fla.). 112: 54-65. PMID 15207782 DOI: 10.1016/J.Clim.2004.03.011 |
0.439 |
|
2002 |
Miranda LR, Schaefer BC, Kupfer A, Hu Z, Franzusoff A. Cell surface expression of the HIV-1 envelope glycoproteins is directed from intracellular CTLA-4-containing regulated secretory granules. Proceedings of the National Academy of Sciences of the United States of America. 99: 8031-6. PMID 12060749 DOI: 10.1073/Pnas.122696599 |
0.334 |
|
2001 |
Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, Franzusoff A, Duke RC, Wilson CC. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nature Medicine. 7: 625-9. PMID 11329066 DOI: 10.1038/87974 |
0.451 |
|
2000 |
Deitz SB, Rambourg A, Képès F, Franzusoff A. Sec7p directs the transitions required for yeast Golgi biogenesis. Traffic. 1: 172-183. PMID 11208097 DOI: 10.1034/J.1600-0854.2000.010209.X |
0.301 |
|
1996 |
Miranda L, Wolf J, Pichuantes S, Duke R, Franzusoff A. Isolation of the Human PC6 Gene Encoding the Putative Host Protease for HIV-1 gp160 Processing in CD4+ T Lymphocytes Proceedings of the National Academy of Sciences of the United States of America. 93: 7695-7700. PMID 8755538 DOI: 10.1073/Pnas.93.15.7695 |
0.405 |
|
1996 |
Wolf JR, Lasher RS, Franzusoff A. The putative membrane anchor protein for yeast Sec7p recruitment. Biochemical and Biophysical Research Communications. 224: 126-33. PMID 8694799 DOI: 10.1006/Bbrc.1996.0995 |
0.307 |
|
1996 |
Deitz SB, Wu C, Silve S, Howell KE, Melançon P, Kahn RA, Franzusoff A. Human ARF4 expression rescues sec7 mutant yeast cells. Molecular and Cellular Biology. 16: 3275-84. PMID 8668142 DOI: 10.1128/Mcb.16.7.3275 |
0.348 |
|
1995 |
Franzusoff A, Volpe AM, Josse D, Pichuantes S, Wolf JR. Biochemical and genetic definition of the cellular protease required for HIV-1 gp160 processing Journal of Biological Chemistry. 270: 3154-3159. PMID 7852398 DOI: 10.1074/Jbc.270.7.3154 |
0.348 |
|
1995 |
Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature. 377: 630-2. PMID 7566174 DOI: 10.1038/377630A0 |
0.348 |
|
1992 |
Franzusoff A. Beauty and the yeast: compartmental organization of the secretory pathway. Seminars in Cell Biology. 3: 309-324. PMID 1457775 DOI: 10.1016/1043-4682(92)90018-Q |
0.323 |
|
1991 |
Melançon P, Franzusoff A, Howell KE. Vesicle budding: insights from cell-free assays Trends in Cell Biology. 1: 165-171. PMID 14731860 DOI: 10.1016/0962-8924(91)90018-5 |
0.33 |
|
Show low-probability matches. |