Malcolm Whitman - Publications

Affiliations: 
Harvard University, Cambridge, MA, United States 
Area:
Cell Biology

54 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Kim Y, Sundrud MS, Zhou C, Edenius M, Zocco D, Powers K, Zhang M, Mazitschek R, Rao A, Yeo CY, Noss EH, Brenner MB, Whitman M, Keller TL. Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. PMID 32253314 DOI: 10.1073/Pnas.1913788117  0.698
2015 Noss EH, Watts GF, Zocco D, Keller TL, Whitman M, Blobel CP, Lee DM, Brenner MB. Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism. Arthritis Research & Therapy. 17: 126. PMID 25975695 DOI: 10.1186/S13075-015-0647-9  0.309
2014 Bordoli MR, Yum J, Breitkopf SB, Thon JN, Italiano JE, Xiao J, Worby C, Wong SK, Lin G, Edenius M, Keller TL, Asara JM, Dixon JE, Yeo CY, Whitman M. A secreted tyrosine kinase acts in the extracellular environment. Cell. 158: 1033-44. PMID 25171405 DOI: 10.1016/J.Cell.2014.06.048  0.655
2013 Rienhoff HY, Yeo CY, Morissette R, Khrebtukova I, Melnick J, Luo S, Leng N, Kim YJ, Schroth G, Westwick J, Vogel H, McDonnell N, Hall JG, Whitman M. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. American Journal of Medical Genetics. Part A. 161: 2040-6. PMID 23824657 DOI: 10.1002/Ajmg.A.36056  0.65
2012 Danciu TE, Chupreta S, Cruz O, Fox JE, Whitman M, Iñiguez-Lluhí JA. Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. The Journal of Biological Chemistry. 287: 18318-29. PMID 22493429 DOI: 10.1074/Jbc.M112.339424  0.382
2012 Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, Kim YJ, Lee HK, Cortese JF, Wirth DF, Dignam JD, Rao A, Yeo CY, Mazitschek R, Whitman M. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nature Chemical Biology. 8: 311-7. PMID 22327401 DOI: 10.1038/Nchembio.790  0.67
2011 Kamberov YG, Kim J, Mazitschek R, Kuo WP, Whitman M. Microarray profiling reveals the integrated stress response is activated by halofuginone in mammary epithelial cells. Bmc Research Notes. 4: 381. PMID 21974968 DOI: 10.1186/1756-0500-4-381  0.743
2010 Ho DM, Yeo CY, Whitman M. The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo. Mechanisms of Development. 127: 485-95. PMID 20807570 DOI: 10.1016/J.Mod.2010.08.004  0.747
2010 Danciu TE, Whitman M. Oxidative stress drives disulfide bond formation between basic helix-loop-helix transcription factors. Journal of Cellular Biochemistry. 109: 417-24. PMID 19950203 DOI: 10.1002/Jcb.22415  0.304
2009 Sundrud MS, Koralov SB, Feuerer M, Calado DP, Kozhaya AE, Rhule-Smith A, Lefebvre RE, Unutmaz D, Mazitschek R, Waldner H, Whitman M, Keller T, Rao A. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science (New York, N.Y.). 324: 1334-8. PMID 19498172 DOI: 10.1126/Science.1172638  0.359
2008 Onuma Y, Watanabe A, Aburatani H, Asashima M, Whitman M. TRIQK, a novel family of small proteins localized to the endoplasmic reticulum membrane, is conserved across vertebrates. Zoological Science. 25: 706-13. PMID 18828657 DOI: 10.2108/Zsj.25.706  0.322
2008 Ho DM, Whitman M. TGF-beta signaling is required for multiple processes during Xenopus tail regeneration. Developmental Biology. 315: 203-16. PMID 18234181 DOI: 10.1016/J.Ydbio.2007.12.031  0.735
2008 Anderson SB, Goldberg AL, Whitman M. Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. The Journal of Biological Chemistry. 283: 7027-35. PMID 18175804 DOI: 10.1074/Jbc.M706678200  0.372
2006 Onuma Y, Asashima M, Whitman M. A Serpin family gene, protease nexin-1 has an activity distinct from protease inhibition in early Xenopus embryos. Mechanisms of Development. 123: 463-71. PMID 16797167 DOI: 10.1016/J.Mod.2006.04.005  0.405
2006 Ho DM, Chan J, Bayliss P, Whitman M. Inhibitor-resistant type I receptors reveal specific requirements for TGF-beta signaling in vivo. Developmental Biology. 295: 730-42. PMID 16684517 DOI: 10.1016/J.Ydbio.2006.03.050  0.746
2006 Onuma Y, Yeo CY, Whitman M. XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning. Development (Cambridge, England). 133: 237-50. PMID 16339189 DOI: 10.1242/Dev.02188  0.704
2005 Onuma Y, Takahashi S, Haramoto Y, Tanegashima K, Yokota C, Whitman M, Asashima M. Xnr2 and Xnr5 unprocessed proteins inhibit Wnt signaling upstream of dishevelled. Developmental Dynamics : An Official Publication of the American Association of Anatomists. 234: 900-10. PMID 16193491 DOI: 10.1002/Dvdy.20574  0.455
2005 Whitman M, Raftery L. TGFbeta signaling at the summit. Development (Cambridge, England). 132: 4205-10. PMID 16155212 DOI: 10.1242/Dev.02023  0.457
2005 Wawersik S, Evola C, Whitman M. Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction. Developmental Biology. 277: 425-42. PMID 15617685 DOI: 10.1016/J.Ydbio.2004.10.002  0.398
2004 Kofron M, Puck H, Standley H, Wylie C, Old R, Whitman M, Heasman J. New roles for FoxH1 in patterning the early embryo. Development (Cambridge, England). 131: 5065-78. PMID 15459100 DOI: 10.1242/Dev.01396  0.435
2003 Kunwar PS, Zimmerman S, Bennett JT, Chen Y, Whitman M, Schier AF. Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development (Cambridge, England). 130: 5589-99. PMID 14522874 DOI: 10.1242/Dev.00803  0.477
2003 Whitman M, McKeon F. p53 and TGF-beta in development: prelude to tumor suppression? Cell. 113: 275-6. PMID 12732134 DOI: 10.1016/S0092-8674(03)00317-9  0.332
2002 Watanabe M, Rebbert ML, Andreazzoli M, Takahashi N, Toyama R, Zimmerman S, Whitman M, Dawid IB. Regulation of the Lim-1 gene is mediated through conserved FAST-1/FoxH1 sites in the first intron. Developmental Dynamics : An Official Publication of the American Association of Anatomists. 225: 448-56. PMID 12454922 DOI: 10.1002/Dvdy.10176  0.358
2002 Oh SP, Yeo CY, Lee Y, Schrewe H, Whitman M, Li E. Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes & Development. 16: 2749-54. PMID 12414726 DOI: 10.1101/Gad.1021802  0.725
2002 Faure S, de Santa Barbara P, Roberts DJ, Whitman M. Endogenous patterns of BMP signaling during early chick development. Developmental Biology. 244: 44-65. PMID 11900458 DOI: 10.1006/Dbio.2002.0579  0.461
2001 Beck CW, Whitman M, Slack JM. The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Developmental Biology. 238: 303-14. PMID 11784012 DOI: 10.1006/Dbio.2001.0407  0.402
2001 Whitman M, Mercola M. TGF-beta superfamily signaling and left-right asymmetry. Science's Stke : Signal Transduction Knowledge Environment. 2001: re1. PMID 11752633 DOI: 10.1126/Stke.2001.64.Re1  0.471
2001 Whitman M. Nodal signaling in early vertebrate embryos: themes and variations. Developmental Cell. 1: 605-17. PMID 11709181 DOI: 10.1016/S1534-5807(01)00076-4  0.427
2001 Schiffer SG, Foley S, Kaffashan A, Hronowski X, Zichittella AE, Yeo CY, Miatkowski K, Adkins HB, Damon B, Whitman M, Salomon D, Sanicola M, Williams KP. Fucosylation of Cripto is required for its ability to facilitate nodal signaling. The Journal of Biological Chemistry. 276: 37769-78. PMID 11500501 DOI: 10.1074/Jbc.M104774200  0.658
2001 Yeo C, Whitman M. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Molecular Cell. 7: 949-57. PMID 11389842 DOI: 10.1016/S1097-2765(01)00249-0  0.723
2001 Shiratori H, Sakuma R, Watanabe M, Hashiguchi H, Mochida K, Sakai Y, Nishino J, Saijoh Y, Whitman M, Hamada H. Two-step regulation of left-right asymmetric expression of Pitx2: initiation by nodal signaling and maintenance by Nkx2. Molecular Cell. 7: 137-49. PMID 11172719 DOI: 10.1016/S1097-2765(01)00162-9  0.387
2000 Osada SI, Saijoh Y, Frisch A, Yeo CY, Adachi H, Watanabe M, Whitman M, Hamada H, Wright CV. Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development (Cambridge, England). 127: 2503-14. PMID 10804190  0.695
2000 Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, Hashiguchi H, Mochida K, Ohishi S, Kawabata M, Miyazono K, Whitman M, Hamada H. Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Molecular Cell. 5: 35-47. PMID 10678167 DOI: 10.1016/S1097-2765(00)80401-3  0.708
1999 Yeo CY, Chen X, Whitman M. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. The Journal of Biological Chemistry. 274: 26584-90. PMID 10473623 DOI: 10.1074/Jbc.274.37.26584  0.707
1998 Weisberg E, Winnier GE, Chen X, Farnsworth CL, Hogan BL, Whitman M. A mouse homologue of FAST-1 transduces TGF beta superfamily signals and is expressed during early embryogenesis. Mechanisms of Development. 79: 17-27. PMID 10349617 DOI: 10.1016/S0925-4773(98)00160-9  0.454
1998 Whitman M. Smads and early developmental signaling by the TGFbeta superfamily. Genes & Development. 12: 2445-62. PMID 9716398 DOI: 10.1101/Gad.12.16.2445  0.414
1997 Whitman M. Signal transduction. Feedback from inhibitory SMADs. Nature. 389: 549-51. PMID 9335489 DOI: 10.1038/39202  0.456
1997 Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature. 389: 85-9. PMID 9288972 DOI: 10.1038/38008  0.498
1997 LaBonne C, Whitman M. Localization of MAP kinase activity in early Xenopus embryos: implications for endogenous FGF signaling. Developmental Biology. 183: 9-20. PMID 9119118 DOI: 10.1006/Dbio.1996.8497  0.404
1996 Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 383: 691-6. PMID 8878477 DOI: 10.1038/383691A0  0.458
1996 Chen X, Rubock MJ, Whitman M. Erratum: A transcriptional partner for MAD proteins in TGF-β signalling Nature. 384: 648-648. DOI: 10.1038/384648B0  0.313
1995 Huang HC, Murtaugh LC, Vize PD, Whitman M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. The Embo Journal. 14: 5965-73. PMID 8846789  0.354
1994 LaBonne C, Whitman M. Mesoderm induction by activin requires FGF-mediated intracellular signals Development. 120: 463-472. PMID 8149921 DOI: 10.1016/0168-9525(94)90085-X  0.464
1992 Whitman M, Melton DA. Involvement of p21ras in Xenopus mesoderm induction. Nature. 357: 252-4. PMID 1589022 DOI: 10.1038/357252A0  0.445
1990 Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell. 63: 485-93. PMID 2225062 DOI: 10.1016/0092-8674(90)90445-K  0.373
1989 Whitman M, Melton DA. Induction of mesoderm by a viral oncogene in early Xenopus embryos. Science (New York, N.Y.). 244: 803-6. PMID 2658054 DOI: 10.1126/Science.2658054  0.46
1988 Roberts TM, Kaplan D, Morgan W, Keller T, Mamon H, Piwnica-Worms H, Druker B, Cohen B, Schaffhausen B, Whitman M, Cantley L, Rapp U, Morrison D. Tyrosine phosphorylation in signal transduction Cold Spring Harbor Symposia On Quantitative Biology. 53: 161-171. PMID 2855480 DOI: 10.1101/Sqb.1988.053.01.022  0.371
1988 Whitman M, Downes CP, Keeler M, Keller T, Cantley L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature. 332: 644-6. PMID 2833705 DOI: 10.1038/332644A0  0.342
1988 Whitman M, Kaplan D, Roberts T, Cantley L. Evidence for two distinct phosphatidylinositol kinases in fibroblasts. Implications for cellular regulation. The Biochemical Journal. 247: 165-74. PMID 2825654 DOI: 10.1042/Bj2470165  0.358
1987 Kaplan DR, Whitman M, Schaffhausen B, Pallas DC, White M, Cantley L, Roberts TM. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity Cell. 50: 1021-1029. PMID 2441878 DOI: 10.1016/0092-8674(87)90168-1  0.344
1987 Cantley LC, Whitman M, Chahwala S, Fleischman L, Kaplan DR, Schaffhausen BS, Roberts TM. Oncogenes and phosphatidylinositol turnover. Annals of the New York Academy of Sciences. 488: 481-90. PMID 2437850 DOI: 10.1111/j.1749-6632.1986.tb46580.x  0.313
1986 Kaplan DR, Whitman M, Schaffhausen B, Raptis L, Garcea RL, Pallas D, Roberts TM, Cantley L. Phosphatidylinositol metabolism and polyoma-mediated transformation. Proceedings of the National Academy of Sciences of the United States of America. 83: 3624-8. PMID 2424008 DOI: 10.1073/Pnas.83.11.3624  0.33
1985 Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature. 315: 239-42. PMID 2987699 DOI: 10.1038/315239A0  0.32
1984 Sugimoto Y, Whitman M, Cantley LC, Erikson RL. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglyercol Proceedings of the National Academy of Sciences of the United States of America. 81: 2117-2121. PMID 6326105 DOI: 10.1073/Pnas.81.7.2117  0.314
Show low-probability matches.