Year |
Citation |
Score |
2022 |
Koper K, Hataya S, Hall AG, Takasuka TE, Maeda HA. Biochemical characterization of plant aromatic aminotransferases. Methods in Enzymology. 680: 35-83. PMID 36710018 DOI: 10.1016/bs.mie.2022.07.034 |
0.373 |
|
2022 |
Yokoyama R, de Oliveira MVV, Takeda-Kimura Y, Ishihara H, Alseekh S, Arrivault S, Kukshal V, Jez JM, Stitt M, Fernie AR, Maeda HA. Point mutations that boost aromatic amino acid production and CO assimilation in plants. Science Advances. 8: eabo3416. PMID 35675400 DOI: 10.1126/sciadv.abo3416 |
0.362 |
|
2022 |
Yokoyama R, Kleven B, Gupta A, Wang Y, Maeda HA. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Current Opinion in Plant Biology. 67: 102219. PMID 35550985 DOI: 10.1016/j.pbi.2022.102219 |
0.362 |
|
2021 |
Lopez-Nieves S, El-Azaz J, Men Y, Holland CK, Feng T, Brockington SF, Jez JM, Maeda HA. Two independently evolved natural mutations additively deregulate TyrA enzymes and boost tyrosine production in planta. The Plant Journal : For Cell and Molecular Biology. PMID 34807484 DOI: 10.1111/tpj.15597 |
0.371 |
|
2021 |
Zhu F, Alseekh S, Koper K, Tong H, Nikoloski Z, Naake T, Liu H, Yan J, Brotman Y, Wen W, Maeda H, Cheng Y, Fernie AR. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. The Plant Cell. PMID 34623442 DOI: 10.1093/plcell/koab251 |
0.322 |
|
2021 |
Yoo H, Shrivastava S, Lynch JH, Huang XQ, Widhalm JR, Guo L, Carter BC, Qian Y, Maeda HA, Ogas JP, Morgan JA, Marshall-Colón A, Dudareva N. Overexpression of arogenate dehydratase reveals an upstream point of metabolic control in phenylalanine biosynthesis. The Plant Journal : For Cell and Molecular Biology. PMID 34403557 DOI: 10.1111/tpj.15467 |
0.773 |
|
2021 |
Gibbs NM, Su SH, Lopez-Nieves S, Mann S, Alban C, Maeda HA, Masson PH. Cadaverine regulates biotin synthesis to modulate primary root growth in Arabidopsis. The Plant Journal : For Cell and Molecular Biology. PMID 34250670 DOI: 10.1111/tpj.15417 |
0.336 |
|
2021 |
Yokoyama R, de Oliveira MVV, Kleven B, Maeda HA. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. The Plant Cell. 33: 671-696. PMID 33955484 DOI: 10.1093/plcell/koaa042 |
0.383 |
|
2021 |
Maeda HA, Fernie AR. Evolutionary History of Plant Metabolism. Annual Review of Plant Biology. PMID 33848429 DOI: 10.1146/annurev-arplant-080620-031054 |
0.327 |
|
2020 |
Schenck CA, Westphal J, Jayaraman D, Garcia K, Wen J, Mysore KS, Ané JM, Sumner LW, Maeda HA. Role of cytosolic, tyrosine-insensitive prephenate dehydrogenase in . Plant Direct. 4: e00218. PMID 32368714 DOI: 10.1002/pld3.218 |
0.423 |
|
2019 |
Maeda HA. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. The Journal of Biological Chemistry. PMID 31558606 DOI: 10.1074/jbc.REV119.006132 |
0.337 |
|
2019 |
Maeda HA. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. Frontiers in Plant Science. 10: 881. PMID 31354760 DOI: 10.3389/fpls.2019.00881 |
0.362 |
|
2019 |
Lopez-Nieves S, Pringle A, Maeda HA. Biochemical characterization of TyrA dehydrogenases from Saccharomyces cerevisiae (Ascomycota) and Pleurotus ostreatus (Basidiomycota). Archives of Biochemistry and Biophysics. 665: 12-19. PMID 30771296 DOI: 10.1016/J.Abb.2019.02.005 |
0.348 |
|
2019 |
Wang M, Toda K, Block A, Maeda HA. TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in . The Journal of Biological Chemistry. PMID 30630953 DOI: 10.1074/Jbc.Ra118.006539 |
0.411 |
|
2019 |
Smith SD, Angelovici R, Heyduk K, Maeda HA, Moghe GD, Pires JC, Widhalm JR, Wisecaver JH. The renaissance of comparative biochemistry. American Journal of Botany. PMID 30629738 DOI: 10.1002/Ajb2.1216 |
0.606 |
|
2018 |
Timoneda A, Sheehan H, Feng T, Lopez-Nieves S, Maeda HA, Brockington S. Redirecting Primary Metabolism to Boost Production of Tyrosine-Derived Specialised Metabolites in Planta. Scientific Reports. 8: 17256. PMID 30467357 DOI: 10.1038/S41598-018-33742-Y |
0.324 |
|
2018 |
de Oliveira MVV, Jin X, Chen X, Griffith D, Batchu S, Maeda HA. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana. The Plant Journal : For Cell and Molecular Biology. PMID 30457178 DOI: 10.1111/tpj.14169 |
0.368 |
|
2018 |
Schenck CA, Maeda HA. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry. 149: 82-102. PMID 29477627 DOI: 10.1016/j.phytochem.2018.02.003 |
0.375 |
|
2018 |
Hollland CK, Berkovich DA, Kohn ML, Maeda H, Jez JM. Structural Basis for Substrate Recognition and Inhibition of Prephenate Aminotransferase from Arabidopsis. The Plant Journal : For Cell and Molecular Biology. PMID 29405514 DOI: 10.1111/Tpj.13856 |
0.444 |
|
2017 |
Schenck CA, Men Y, Maeda HA. Conserved Molecular Mechanism of TyrA Dehydrogenase Substrate Specificity Underlying Alternative Tyrosine Biosynthetic Pathways in Plants and Microbes. Frontiers in Molecular Biosciences. 4: 73. PMID 29164132 DOI: 10.3389/fmolb.2017.00073 |
0.372 |
|
2017 |
Lopez-Nieves S, Yang Y, Timoneda A, Wang M, Feng T, Smith SA, Brockington SF, Maeda HA. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. The New Phytologist. PMID 28990194 DOI: 10.1111/Nph.14822 |
0.381 |
|
2017 |
Lynch JH, Orlova I, Zhao C, Guo L, Jaini R, Maeda H, Akhtar T, Cruz-Lebron J, Rhodes D, Morgan J, Pilot G, Pichersky E, Dudareva N. Multifaceted Plant Reponses to Circumvent Phe Hyperaccumulation by Downregulation of Flux through the Shikimate Pathway and by Vacuolar Phe Sequestration. The Plant Journal : For Cell and Molecular Biology. PMID 28977710 DOI: 10.1111/Tpj.13730 |
0.73 |
|
2017 |
Schenck CA, Holland CK, Schneider MR, Men Y, Lee SG, Jez JM, Maeda HA. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants. Nature Chemical Biology. PMID 28671678 DOI: 10.1038/Nchembio.2414 |
0.371 |
|
2016 |
Maeda H. CORRECTION: Phylobiochemical Characterization of Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway. The Plant Cell. PMID 28011691 DOI: 10.1105/Tpc.16.00951 |
0.44 |
|
2016 |
Wang M, Toda K, Maeda HA. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana. Phytochemistry. PMID 27726859 DOI: 10.1016/j.phytochem.2016.09.007 |
0.354 |
|
2015 |
Schenck CA, Chen S, Siehl DL, Maeda HA. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes. Nature Chemical Biology. 11: 52-7. PMID 25402771 DOI: 10.1038/nchembio.1693 |
0.348 |
|
2014 |
Dornfeld C, Weisberg AJ, K C R, Dudareva N, Jelesko JG, Maeda HA. Phylobiochemical characterization of class-Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway. The Plant Cell. 26: 3101-14. PMID 25070637 DOI: 10.1105/Tpc.114.127407 |
0.655 |
|
2014 |
Maeda H, Song W, Sage T, Dellapenna D. Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants. Frontiers in Plant Science. 5: 46. PMID 24600460 DOI: 10.3389/Fpls.2014.00046 |
0.759 |
|
2013 |
Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nature Communications. 4: 2833. PMID 24270997 DOI: 10.1038/Ncomms3833 |
0.676 |
|
2012 |
Muhlemann JK, Maeda H, Chang CY, San Miguel P, Baxter I, Cooper B, Perera MA, Nikolau BJ, Vitek O, Morgan JA, Dudareva N. Developmental changes in the metabolic network of snapdragon flowers. Plos One. 7: e40381. PMID 22808147 DOI: 10.1371/Journal.Pone.0040381 |
0.641 |
|
2012 |
Maeda H, Dudareva N. The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annual Review of Plant Biology. 63: 73-105. PMID 22554242 DOI: 10.1146/Annurev-Arplant-042811-105439 |
0.674 |
|
2011 |
Maeda H, Yoo H, Dudareva N. Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nature Chemical Biology. 7: 19-21. PMID 21102469 DOI: 10.1038/Nchembio.485 |
0.67 |
|
2010 |
Song W, Maeda H, DellaPenna D. Mutations of the ER to plastid lipid transporters TGD1, 2, 3 and 4 and the ER oleate desaturase FAD2 suppress the low temperature-induced phenotype of Arabidopsis tocopherol-deficient mutant vte2. The Plant Journal : For Cell and Molecular Biology. 62: 1004-18. PMID 20345604 DOI: 10.1111/J.1365-313X.2010.04212.X |
0.759 |
|
2010 |
Maeda H, Shasany AK, Schnepp J, Orlova I, Taguchi G, Cooper BR, Rhodes D, Pichersky E, Dudareva N. RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. The Plant Cell. 22: 832-49. PMID 20215586 DOI: 10.1105/Tpc.109.073247 |
0.704 |
|
2009 |
Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A, Citovsky V, Pichersky E, Dudareva N. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta Plant Cell. 21: 4002-4017. PMID 20028839 DOI: 10.1105/Tpc.109.071282 |
0.706 |
|
2008 |
Maeda H, Sage TL, Isaac G, Welti R, Dellapenna D. Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. The Plant Cell. 20: 452-70. PMID 18314499 DOI: 10.1105/Tpc.107.054718 |
0.67 |
|
2007 |
Maeda H, DellaPenna D. Tocopherol functions in photosynthetic organisms. Current Opinion in Plant Biology. 10: 260-5. PMID 17434792 DOI: 10.1016/J.Pbi.2007.04.006 |
0.69 |
|
2006 |
Maeda H, Song W, Sage TL, DellaPenna D. Tocopherols play a crucial role in low-temperature adaptation and Phloem loading in Arabidopsis. The Plant Cell. 18: 2710-32. PMID 17012603 DOI: 10.1105/Tpc.105.039404 |
0.76 |
|
2006 |
Sakuragi Y, Maeda H, Dellapenna D, Bryant DA. alpha-Tocopherol plays a role in photosynthesis and macronutrient homeostasis of the cyanobacterium Synechocystis sp. PCC 6803 that is independent of its antioxidant function. Plant Physiology. 141: 508-21. PMID 16565298 DOI: 10.1104/Pp.105.074765 |
0.641 |
|
2006 |
Maeda H, Sakuragi Y, Bryant DA, DellaPenna D. Erratum: Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation (Plant Physiology (2005) 138 (1422-1435)) Plant Physiology. 140. DOI: 10.1104/Pp.104.900187 |
0.627 |
|
2005 |
Maeda H, Sakuragi Y, Bryant DA, Dellapenna D. Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiology. 138: 1422-35. PMID 15965015 DOI: 10.1104/Pp.105.061135 |
0.636 |
|
2003 |
Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. The Plant Cell. 15: 2343-56. PMID 14508009 DOI: 10.1105/Tpc.013656 |
0.707 |
|
1999 |
Maeda H, Selvakumar N, Kraus GA. An efficient synthesis of 4-aryl kainic acid analogs Tetrahedron. 55: 943-954. DOI: 10.1016/S0040-4020(98)01101-6 |
0.301 |
|
1995 |
Kraus GA, Maeda H. Carbohydrate-Based Strategy for the Synthesis of Zaragozic Acid via a Novel Lewis Acid-Mediated Reaction of an .alpha.-Acetoxy Sulfide Journal of Organic Chemistry. 60: 2-3. DOI: 10.1021/Jo00106A001 |
0.309 |
|
Show low-probability matches. |