165 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Leandro J, Khamrui S, Wang H, Suebsuwong C, Nemeria NS, Huynh K, Moustakim M, Secor C, Wang M, Dodatko T, Stauffer B, Wilson CG, Yu C, Arkin MR, Jordan F, et al. Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex. Acs Chemical Biology. PMID 32633484 DOI: 10.1021/Acschembio.0C00114  0.36
2020 Zhang X, Nemeria NS, Leandro J, Houten S, Lazarus MB, Gerfen GJ, Ozohanics O, Ambrus A, Nagy B, Brukh R, Jordan F. Structure-function analyses of the G729R 2-oxoadipate dehydrogenase genetic variant associated with L-lysine metabolism disorder. The Journal of Biological Chemistry. PMID 32303640 DOI: 10.1074/Jbc.Ra120.012761  0.328
2020 Leandro J, Dodatko T, Aten J, Nemeria NS, Zhang X, Jordan F, Hendrickson RC, Sanchez R, Yu C, DeVita RJ, Houten SM. DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Human Molecular Genetics. PMID 32160276 DOI: 10.1093/Hmg/Ddaa037  0.366
2019 DeColli AA, Zhang X, Heflin K, Jordan F, Freel Meyers CL. Active site histidines link conformational dynamics with catalysis on anti-infective target 1-deoxy-D-xylulose 5-phosphate synthase. Biochemistry. PMID 31724401 DOI: 10.1021/Acs.Biochem.9B00878  0.346
2019 Szabo E, Wilk P, Nagy B, Zambo Z, Bui D, Weichsel A, Arjunan P, Torocsik B, Hubert A, Furey W, Montfort WR, Jordan F, Weiss MS, Adam-Vizi V, Ambrus A. Underlying molecular alterations in human dihydrolipoamide dehydrogenase deficiency revealed by structural analyses of disease-causing enzyme variants. Human Molecular Genetics. PMID 31334547 DOI: 10.2210/Pdb6I4P/Pdb  0.343
2018 Whitley MJ, Arjunan P, Nemeria NS, Korotchkina LG, Park YH, Patel M, Jordan F, Furey WF. Pyruvate dehydrogenase complex deficiency is linked to regulatory loop disorder in the αV138M variant of human pyruvate dehydrogenase. The Journal of Biological Chemistry. PMID 29970614 DOI: 10.1074/Jbc.Ra118.003996  0.594
2018 Chakraborty J, Nemeria NS, Farinas E, Jordan F. Catalysis of transthiolacylation in the active centers of dihydrolipoamide acyltransacetylase components of 2-oxo acid dehydrogenase complexes. Febs Open Bio. 8: 880-896. PMID 29928569 DOI: 10.1002/2211-5463.12431  0.421
2018 DeColli AA, Nemeria NS, Majumdar A, Gerfen GJ, Jordan F, Freel Meyers CL. Oxidative decarboxylation of pyruvate by 1-deoxy-D-xyulose 5-phosphate synthase, a central metabolic enzyme in bacteria. The Journal of Biological Chemistry. PMID 29784878 DOI: 10.1074/Jbc.Ra118.001980  0.322
2018 Nemeria NS, Gerfen G, Yang L, Zhang X, Jordan F. Evidence for functional and regulatory cross-talk between the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex and 2-oxoadipate dehydrogenase on the l-lysine, l-hydroxylysine and l-tryptophan degradation pathways from studies in vitro. Biochimica Et Biophysica Acta. PMID 29752936 DOI: 10.1016/J.Bbabio.2018.05.001  0.358
2017 Nemeria NS, Gerfen G, Nareddy PR, Yang L, Zhang X, Szostak M, Jordan F. The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species. Free Radical Biology & Medicine. 115: 136-145. PMID 29191460 DOI: 10.1016/J.Freeradbiomed.2017.11.018  0.411
2017 Zhou J, Yang L, DeColli A, Freel Meyers C, Nemeria NS, Jordan F. Conformational dynamics of 1-deoxy-d-xylulose 5-phosphate synthase on ligand binding revealed by H/D exchange MS. Proceedings of the National Academy of Sciences of the United States of America. PMID 28808005 DOI: 10.1073/Pnas.1619981114  0.387
2017 Nemeria NS, Gerfen G, Guevara E, Nareddy PR, Szostak M, Jordan F. The Human Krebs Cycle 2-Oxoglutarate Dehydrogenase Complex Creates an Additional Source of Superoxide/Hydrogen Peroxide from 2-Oxoadipate as Alternative Substrate. Free Radical Biology & Medicine. PMID 28435050 DOI: 10.1016/J.Freeradbiomed.2017.04.017  0.349
2017 Guevara EL, Yang L, Birkaya B, Zhou J, Nemeria NS, Patel MS, Jordan F. Global view of cognate kinase activation by the human pyruvate dehydrogenase complex. Scientific Reports. 7: 42760. PMID 28230160 DOI: 10.1038/Srep42760  0.385
2016 Ambrus A, Wang J, Mizsei R, Zambo Z, Torocsik B, Jordan F, Adam-Vizi V. Structural alterations induced by ten disease-causing mutations of human dihydrolipoamide dehydrogenase analyzed by hydrogen/deuterium-exchange mass spectrometry: Implications for the structural basis of E3 deficiency. Biochimica Et Biophysica Acta. PMID 27544700 DOI: 10.1016/J.Bbadis.2016.08.013  0.314
2016 Nemeria NS, Shome B, DeColli AA, Heflin K, Begley TP, Meyers CF, Jordan F. COMPETENCE OF THIAMIN DIPHOSPHATE-DEPENDENT ENZYMES WITH 2'-METHOXYTHIAMIN DIPHOSPHATE DERIVED FROM BACIMETHRIN, A NATURALLY OCCURRING THIAMIN ANTI-VITAMIN. Biochemistry. PMID 26813608 DOI: 10.1021/Acs.Biochem.5B01300  0.453
2016 Nareddy P, Jordan F, Brenner-Moyer SE, Szostak M. Ruthenium(II)-Catalyzed Regioselective C-H Arylation of Cyclic and N,N-Dialkyl Benzamides with Boronic Acids by Weak Coordination Acs Catalysis. 6: 4755-4759. DOI: 10.1021/Acscatal.6B01360  0.312
2015 Ambrus A, Nemeria NS, Torocsik B, Tretter L, Nilsson M, Jordan F, Adam-Vizi V. Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components. Free Radical Biology & Medicine. 89: 642-650. PMID 26456061 DOI: 10.1016/J.Freeradbiomed.2015.10.001  0.382
2015 Wang J, Kumaran S, Zhou J, Nemeria NS, Tao H, Kakalis L, Park YH, Birkaya B, Patel MS, Jordan F. Elucidation of the interaction loci of the human pyruvate dehydrogenase complex E2·E3BP core with pyruvate dehydrogenase kinase 1 and kinase 2 by H/D exchange mass spectrometry and nuclear magnetic resonance. Biochemistry. 54: 69-82. PMID 25436986 DOI: 10.1021/Bi5013113  0.577
2014 Jordan F, Nemeria NS. Progress in the experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations. Bioorganic Chemistry. 57: 251-62. PMID 25228115 DOI: 10.1016/J.Bioorg.2014.08.002  0.399
2014 Arjunan P, Wang J, Nemeria NS, Reynolds S, Brown I, Chandrasekhar K, Calero G, Jordan F, Furey W. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex. The Journal of Biological Chemistry. 289: 30161-76. PMID 25210042 DOI: 10.1074/Jbc.M114.592915  0.4
2014 Nemeria NS, Ambrus A, Patel H, Gerfen G, Adam-Vizi V, Tretter L, Zhou J, Wang J, Jordan F. Human 2-oxoglutarate dehydrogenase complex E1 component forms a thiamin-derived radical by aerobic oxidation of the enamine intermediate. The Journal of Biological Chemistry. 289: 29859-73. PMID 25210035 DOI: 10.1074/Jbc.M114.591073  0.388
2014 Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes: structure-based function and regulation. The Journal of Biological Chemistry. 289: 16615-23. PMID 24798336 DOI: 10.1074/Jbc.R114.563148  0.392
2014 Brammer Basta LA, Patel H, Kakalis L, Jordan F, Freel Meyers CL. Defining critical residues for substrate binding to 1-deoxy-D-xylulose 5-phosphate synthase--active site substitutions stabilize the predecarboxylation intermediate C2α-lactylthiamin diphosphate. The Febs Journal. 281: 2820-37. PMID 24767541 DOI: 10.1111/Febs.12823  0.406
2014 Wang J, Nemeria NS, Chandrasekhar K, Kumaran S, Arjunan P, Reynolds S, Calero G, Brukh R, Kakalis L, Furey W, Jordan F. Structure and function of the catalytic domain of the dihydrolipoyl acetyltransferase component in Escherichia coli pyruvate dehydrogenase complex. The Journal of Biological Chemistry. 289: 15215-30. PMID 24742683 DOI: 10.1074/Jbc.M113.544080  0.376
2014 Patel H, Nemeria NS, Andrews FH, McLeish MJ, Jordan F. Identification of charge transfer transitions related to thiamin-bound intermediates on enzymes provides a plethora of signatures useful in mechanistic studies. Biochemistry. 53: 2145-52. PMID 24628377 DOI: 10.1021/Bi4015743  0.373
2013 Patel H, Shim DJ, Farinas ET, Jordan F. Investigation of the donor and acceptor range for chiral carboligation catalyzed by the E1 component of the 2-oxoglutarate dehydrogenase complex. Journal of Molecular Catalysis. B, Enzymatic. 98. PMID 24277992 DOI: 10.1016/J.Molcatb.2013.09.010  0.442
2013 Kumaran S, Patel MS, Jordan F. Nuclear magnetic resonance approaches in the study of 2-oxo acid dehydrogenase multienzyme complexes--a literature review. Molecules (Basel, Switzerland). 18: 11873-903. PMID 24077172 DOI: 10.3390/Molecules181011873  0.429
2013 Jordan F, Patel H. Catalysis in Enzymatic Decarboxylations: Comparison of Selected Cofactor-dependent and Cofactor-independent Examples. Acs Catalysis. 3: 1601-1617. PMID 23914308 DOI: 10.1021/Cs400272X  0.389
2013 Balakrishnan A, Jordan F, Nathan CF. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase. The Journal of Biological Chemistry. 288: 21688-702. PMID 23760263 DOI: 10.1074/Jbc.M113.465419  0.598
2013 Chandrasekhar K, Wang J, Arjunan P, Sax M, Park YH, Nemeria NS, Kumaran S, Song J, Jordan F, Furey W. Insight to the interaction of the dihydrolipoamide acetyltransferase (E2) core with the peripheral components in the Escherichia coli pyruvate dehydrogenase complex via multifaceted structural approaches. The Journal of Biological Chemistry. 288: 15402-17. PMID 23580650 DOI: 10.1074/Jbc.M113.466789  0.68
2013 Kovach IM, Kakalis L, Jordan F, Zhang D. Proton bridging in the interactions of thrombin with hirudin and its mimics. Biochemistry. 52: 2472-81. PMID 23517305 DOI: 10.1021/Bi301625A  0.363
2012 Balakrishnan A, Nemeria NS, Chakraborty S, Kakalis L, Jordan F. Determination of pre-steady-state rate constants on the Escherichia coli pyruvate dehydrogenase complex reveals that loop movement controls the rate-limiting step. Journal of the American Chemical Society. 134: 18644-55. PMID 23088422 DOI: 10.1021/Ja3062375  0.63
2012 Patel H, Nemeria NS, Brammer LA, Freel Meyers CL, Jordan F. Observation of thiamin-bound intermediates and microscopic rate constants for their interconversion on 1-deoxy-D-xylulose 5-phosphate synthase: 600-fold rate acceleration of pyruvate decarboxylation by D-glyceraldehyde-3-phosphate. Journal of the American Chemical Society. 134: 18374-9. PMID 23072514 DOI: 10.1021/Ja307315U  0.358
2012 Nemeria N, Binshtein E, Patel H, Balakrishnan A, Vered I, Shaanan B, Barak Z, Chipman D, Jordan F. Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4'-aminopyrimidinium and 1',4'-iminopyrimidine tautomeric forms in the absence of the conserved glutamate. Biochemistry. 51: 7940-52. PMID 22970650 DOI: 10.1021/Bi300893V  0.63
2012 Song J, Jordan F. Interchain acetyl transfer in the E2 component of bacterial pyruvate dehydrogenase suggests a model with different roles for each chain in a trimer of the homooligomeric component. Biochemistry. 51: 2795-803. PMID 22413895 DOI: 10.1021/Bi201614N  0.608
2012 Balakrishnan A, Gao Y, Moorjani P, Nemeria NS, Tittmann K, Jordan F. Bifunctionality of the thiamin diphosphate cofactor: assignment of tautomeric/ionization states of the 4'-aminopyrimidine ring when various intermediates occupy the active sites during the catalysis of yeast pyruvate decarboxylase. Journal of the American Chemical Society. 134: 3873-85. PMID 22300533 DOI: 10.1021/Ja211139C  0.718
2012 Balakrishnan A, Paramasivam S, Chakraborty S, Polenova T, Jordan F. Solid-state nuclear magnetic resonance studies delineate the role of the protein in activation of both aromatic rings of thiamin. Journal of the American Chemical Society. 134: 665-72. PMID 22092024 DOI: 10.1021/Ja209856X  0.611
2011 Shim da J, Nemeria NS, Balakrishnan A, Patel H, Song J, Wang J, Jordan F, Farinas ET. Assignment of function to histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; substitutions that lead to acceptance of substrates lacking the 5-carboxyl group. Biochemistry. 50: 7705-9. PMID 21809826 DOI: 10.1021/Bi200936N  0.691
2011 Paramasivam S, Balakrishnan A, Dmitrenko O, Godert A, Begley TP, Jordan F, Polenova T. Solid-state NMR and density functional theory studies of ionization states of thiamin. The Journal of Physical Chemistry. B. 115: 730-6. PMID 21175136 DOI: 10.1021/Jp109765B  0.564
2010 Meyer D, Neumann P, Parthier C, Friedemann R, Nemeria N, Jordan F, Tittmann K. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate . Biochemistry. 49: 8197-212. PMID 20715795 DOI: 10.1021/Bi100828R  0.445
2010 Nemeria NS, Arjunan P, Chandrasekhar K, Mossad M, Tittmann K, Furey W, Jordan F. Communication between thiamin cofactors in the Escherichia coli pyruvate dehydrogenase complex E1 component active centers: evidence for a "direct pathway" between the 4'-aminopyrimidine N1' atoms. The Journal of Biological Chemistry. 285: 11197-209. PMID 20106967 DOI: 10.1074/Jbc.M109.069179  0.44
2010 Song J, Park YH, Nemeria NS, Kale S, Kakalis L, Jordan F. Nuclear magnetic resonance evidence for the role of the flexible regions of the E1 component of the pyruvate dehydrogenase complex from gram-negative bacteria. The Journal of Biological Chemistry. 285: 4680-94. PMID 19996100 DOI: 10.1074/Jbc.M109.082842  0.759
2009 Jordan F, Arjunan P, Kale S, Nemeria NS, Furey W. Multiple roles of mobile active center loops in the E1 component of the Escherichia coli pyruvate dehydrogenase complex - Linkage of protein dynamics to catalysis. Journal of Molecular Catalysis. B, Enzymatic. 61: 14-22. PMID 20160956 DOI: 10.1016/J.Molcatb.2009.04.008  0.653
2009 Kale S, Jordan F. Conformational ensemble modulates cooperativity in the rate-determining catalytic step in the E1 component of the Escherichia coli pyruvate dehydrogenase multienzyme complex. The Journal of Biological Chemistry. 284: 33122-9. PMID 19801660 DOI: 10.1074/Jbc.M109.065508  0.637
2009 Kovach IM, Kelley P, Eddy C, Jordan F, Baykal A. Proton bridging in the interactions of thrombin with small inhibitors. Biochemistry. 48: 7296-304. PMID 19530705 DOI: 10.1021/Bi900098S  0.361
2009 Nemeria NS, Chakraborty S, Balakrishnan A, Jordan F. Reaction mechanisms of thiamin diphosphate enzymes: defining states of ionization and tautomerization of the cofactor at individual steps. The Febs Journal. 276: 2432-46. PMID 19476485 DOI: 10.1111/J.1742-4658.2009.06964.X  0.585
2009 Brandt GS, Kneen MM, Chakraborty S, Baykal AT, Nemeria N, Yep A, Ruby DI, Petsko GA, Kenyon GL, McLeish MJ, Jordan F, Ringe D. Snapshot of a reaction intermediate: analysis of benzoylformate decarboxylase in complex with a benzoylphosphonate inhibitor. Biochemistry. 48: 3247-57. PMID 19320438 DOI: 10.1021/Bi801950K  0.714
2009 Chakraborty S, Nemeria NS, Balakrishnan A, Brandt GS, Kneen MM, Yep A, McLeish MJ, Kenyon GL, Petsko GA, Ringe D, Jordan F. Detection and time course of formation of major thiamin diphosphate-bound covalent intermediates derived from a chromophoric substrate analogue on benzoylformate decarboxylase. Biochemistry. 48: 981-94. PMID 19140682 DOI: 10.1021/Bi801810H  0.602
2008 Brandt GS, Nemeria N, Chakraborty S, McLeish MJ, Yep A, Kenyon GL, Petsko GA, Jordan F, Ringe D. Probing the active center of benzaldehyde lyase with substitutions and the pseudosubstrate analogue benzoylphosphonic acid methyl ester. Biochemistry. 47: 7734-43. PMID 18570438 DOI: 10.1021/Bi8004413  0.416
2008 Chakraborty S, Nemeria N, Yep A, McLeish MJ, Kenyon GL, Jordan F. Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects. Biochemistry. 47: 3800-9. PMID 18314961 DOI: 10.1021/Bi702302U  0.419
2008 Kale S, Ulas G, Song J, Brudvig GW, Furey W, Jordan F. Efficient coupling of catalysis and dynamics in the E1 component of Escherichia coli pyruvate dehydrogenase multienzyme complex. Proceedings of the National Academy of Sciences of the United States of America. 105: 1158-63. PMID 18216265 DOI: 10.1073/Pnas.0709328105  0.719
2007 Nemeria N, Korotchkina L, McLeish MJ, Kenyon GL, Patel MS, Jordan F. Elucidation of the chemistry of enzyme-bound thiamin diphosphate prior to substrate binding: defining internal equilibria among tautomeric and ionization states. Biochemistry. 46: 10739-44. PMID 17715948 DOI: 10.1021/Bi700838Q  0.449
2007 Kale S, Arjunan P, Furey W, Jordan F. A dynamic loop at the active center of the Escherichia coli pyruvate dehydrogenase complex E1 component modulates substrate utilization and chemical communication with the E2 component. The Journal of Biological Chemistry. 282: 28106-16. PMID 17635929 DOI: 10.1074/Jbc.M704326200  0.642
2007 Nemeria N, Chakraborty S, Baykal A, Korotchkina LG, Patel MS, Jordan F. The 1',4'-iminopyrimidine tautomer of thiamin diphosphate is poised for catalysis in asymmetric active centers on enzymes. Proceedings of the National Academy of Sciences of the United States of America. 104: 78-82. PMID 17182735 DOI: 10.1073/Pnas.0609973104  0.466
2007 Kale S, Jordan F. Interaction of Residues Aspartate 549 and Arginine 404 Modulates Active Site Accessibility and Intersubunit Communication in the E1 Subunit of Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex The Faseb Journal. 21. DOI: 10.1096/Fasebj.21.5.A645-A  0.613
2007 Park Y, Jordan F. Identification of the Loci of Interaction between the E1 and E2 Subunits of the Pyruvate Dehydrogenase Complex from Escherichia coli The Faseb Journal. 21. DOI: 10.1096/Fasebj.21.5.A645  0.584
2006 Joseph E, Wei W, Tittmann K, Jordan F. Function of a conserved loop of the beta-domain, not involved in thiamin diphosphate binding, in catalysis and substrate activation in yeast pyruvate decarboxylase. Biochemistry. 45: 13517-27. PMID 17087505 DOI: 10.1021/Bi0615588  0.76
2006 Baykal A, Chakraborty S, Dodoo A, Jordan F. Synthesis with good enantiomeric excess of both enantiomers of alpha-ketols and acetolactates by two thiamin diphosphate-dependent decarboxylases. Bioorganic Chemistry. 34: 380-93. PMID 17083961 DOI: 10.1016/J.Bioorg.2006.09.006  0.462
2006 Nemeria NS, Korotchkina LG, Chakraborty S, Patel MS, Jordan F. Acetylphosphinate is the most potent mechanism-based substrate-like inhibitor of both the human and Escherichia coli pyruvate dehydrogenase components of the pyruvate dehydrogenase complex. Bioorganic Chemistry. 34: 362-79. PMID 17070897 DOI: 10.1016/J.Bioorg.2006.09.001  0.411
2006 Chandrasekhar K, Arjunan P, Sax M, Nemeria N, Jordan F, Furey W. Active-site changes in the pyruvate dehydrogenase multienzyme complex E1 apoenzyme component from Escherichia coli observed at 2.32 A resolution. Acta Crystallographica. Section D, Biological Crystallography. 62: 1382-6. PMID 17057342 DOI: 10.1107/S0907444906034408  0.422
2006 Baykal AT, Kakalis L, Jordan F. Electronic and nuclear magnetic resonance spectroscopic features of the 1',4'-iminopyrimidine tautomeric form of thiamin diphosphate, a novel intermediate on enzymes requiring this coenzyme. Biochemistry. 45: 7522-8. PMID 16768448 DOI: 10.1021/Bi060395K  0.703
2006 Arjunan P, Sax M, Brunskill A, Chandrasekhar K, Nemeria N, Zhang S, Jordan F, Furey W. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct. The Journal of Biological Chemistry. 281: 15296-303. PMID 16531404 DOI: 10.1074/Jbc.M600656200  0.471
2005 Jordan F, Nemeria NS, Sergienko E. Multiple modes of active center communication in thiamin diphosphate-dependent enzymes. Accounts of Chemical Research. 38: 755-63. PMID 16171318 DOI: 10.1021/Ar040244E  0.411
2005 Jordan F, Nemeria NS. Experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations. Bioorganic Chemistry. 33: 190-215. PMID 15888311 DOI: 10.1016/J.Bioorg.2005.02.001  0.397
2005 Nemeria N, Tittmann K, Joseph E, Zhou L, Vazquez-Coll MB, Arjunan P, Hübner G, Furey W, Jordan F. Glutamate 636 of the Escherichia coli pyruvate dehydrogenase-E1 participates in active center communication and behaves as an engineered acetolactate synthase with unusual stereoselectivity. The Journal of Biological Chemistry. 280: 21473-82. PMID 15802265 DOI: 10.1074/Jbc.M502691200  0.782
2005 Zhang S, Zhou L, Nemeria N, Yan Y, Zhang Z, Zou Y, Jordan F. Evidence for dramatic acceleration of a C-H bond ionization rate in thiamin diphosphate enzymes by the protein environment. Biochemistry. 44: 2237-43. PMID 15709735 DOI: 10.1021/Bi047696J  0.627
2005 Arjunan P, Sax M, Brunskill A, Nemeria N, Jordan F, Furey W. TheE. coliPDHc E1 component complex with a reaction intermediate analogue Acta Crystallographica Section A. 61. DOI: 10.1107/S0108767305091415  0.35
2004 Park YH, Wei W, Zhou L, Nemeria N, Jordan F. Amino-terminal residues 1-45 of the Escherichia coli pyruvate dehydrogenase complex E1 subunit interact with the E2 subunit and are required for activity of the complex but not for reductive acetylation of the E2 subunit. Biochemistry. 43: 14037-46. PMID 15518552 DOI: 10.1021/Bi049027B  0.73
2004 Jordan F. Biochemistry. How active sites communicate in thiamine enzymes. Science (New York, N.Y.). 306: 818-20. PMID 15514144 DOI: 10.1126/Science.1105457  0.342
2004 Zhang S, Liu M, Yan Y, Zhang Z, Jordan F. C2-alpha-lactylthiamin diphosphate is an intermediate on the pathway of thiamin diphosphate-dependent pyruvate decarboxylation. Evidence on enzymes and models. The Journal of Biological Chemistry. 279: 54312-8. PMID 15501823 DOI: 10.1074/Jbc.M409278200  0.512
2004 Nemeria N, Baykal A, Joseph E, Zhang S, Yan Y, Furey W, Jordan F. Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the michaelis complex or the free coenzyme. Biochemistry. 43: 6565-75. PMID 15157089 DOI: 10.1021/Bi049549R  0.734
2004 Arjunan P, Chandrasekhar K, Sax M, Brunskill A, Nemeria N, Jordan F, Furey W. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate. Biochemistry. 43: 2405-11. PMID 14992577 DOI: 10.1021/Bi030200Y  0.443
2003 Jordan F, Nemeria NS, Zhang S, Yan Y, Arjunan P, Furey W. Dual catalytic apparatus of the thiamin diphosphate coenzyme: acid-base via the 1',4'-iminopyrimidine tautomer along with its electrophilic role. Journal of the American Chemical Society. 125: 12732-8. PMID 14558820 DOI: 10.1021/Ja0346126  0.41
2003 Tittmann K, Golbik R, Uhlemann K, Khailova L, Schneider G, Patel M, Jordan F, Chipman DM, Duggleby RG, Hübner G. NMR analysis of covalent intermediates in thiamin diphosphate enzymes. Biochemistry. 42: 7885-91. PMID 12834340 DOI: 10.1021/Bi034465O  0.428
2003 Jordan F. Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. Natural Product Reports. 20: 184-201. PMID 12735696 DOI: 10.1039/B111348H  0.393
2003 Wei W, Li H, Nemeria N, Jordan F. Expression and purification of the dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase subunits of the Escherichia coli pyruvate dehydrogenase multienzyme complex: a mass spectrometric assay for reductive acetylation of dihydrolipoamide acetyltransferase. Protein Expression and Purification. 28: 140-50. PMID 12651118 DOI: 10.1016/S1046-5928(02)00674-5  0.522
2003 Polovnikova ES, McLeish MJ, Sergienko EA, Burgner JT, Anderson NL, Bera AK, Jordan F, Kenyon GL, Hasson MS. Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase. Biochemistry. 42: 1820-30. PMID 12590569 DOI: 10.1021/Bi026490K  0.409
2002 Nemeria N, Arjunan P, Brunskill A, Sheibani F, Wei W, Yan Y, Zhang S, Jordan F, Furey W. Histidine 407, a phantom residue in the E1 subunit of the Escherichia coli pyruvate dehydrogenase complex, activates reductive acetylation of lipoamide on the E2 subunit. An explanation for conservation of active sites between the E1 subunit and transketolase. Biochemistry. 41: 15459-67. PMID 12501174 DOI: 10.1021/Bi0205909  0.566
2002 Jordan F, Zhang Z, Sergienko E. Spectroscopic evidence for participation of the 1',4'-imino tautomer of thiamin diphosphate in catalysis by yeast pyruvate decarboxylase. Bioorganic Chemistry. 30: 188-98. PMID 12406703 DOI: 10.1006/Bioo.2002.1249  0.42
2002 Sergienko EA, Jordan F. Yeast pyruvate decarboxylase tetramers can dissociate into dimers along two interfaces. Hybrids of low-activity D28A (or D28N) and E477Q variants, with substitution of adjacent active center acidic groups from different subunits, display restored activity. Biochemistry. 41: 6164-9. PMID 11994012 DOI: 10.1021/Bi0121712  0.4
2002 Arjunan P, Nemeria N, Brunskill A, Chandrasekhar K, Sax M, Yan Y, Jordan F, Guest JR, Furey W. Structure of the pyruvate dehydrogenase multienzyme complex E1 component from Escherichia coli at 1.85 A resolution. Biochemistry. 41: 5213-21. PMID 11955070 DOI: 10.1021/Bi0118557  0.441
2002 Kahyaoglu A, Jordan F. Direct proton magnetic resonance determination of the pKa of the active center histidine in thiolsubtilisin. Protein Science : a Publication of the Protein Society. 11: 965-73. PMID 11910039 DOI: 10.1110/Ps.3890102  0.376
2002 Sergienko EA, Jordan F. New model for activation of yeast pyruvate decarboxylase by substrate consistent with the alternating sites mechanism: demonstration of the existence of two active forms of the enzyme. Biochemistry. 41: 3952-67. PMID 11900538 DOI: 10.1021/Bi011860A  0.382
2002 Wei W, Liu M, Jordan F. Solvent kinetic isotope effects monitor changes in hydrogen bonding at the active center of yeast pyruvate decarboxylase concomitant with substrate activation: the substituent at position 221 can control the state of activation. Biochemistry. 41: 451-61. PMID 11781083 DOI: 10.1021/Bi0112964  0.587
2002 Arjunan P, Sax M, Furey W, Nemeria N, Jordan F. Comparison of E1 from the E. coli pyruvate dehydrogenase complex with S. cerevisiae transketolase Acta Crystallographica Section A. 58: 95-95. DOI: 10.1107/S0108767302088840  0.354
2001 Sergienko EA, Jordan F. Catalytic acid-base groups in yeast pyruvate decarboxylase. 3. A steady-state kinetic model consistent with the behavior of both wild-type and variant enzymes at all relevant pH values. Biochemistry. 40: 7382-7403. PMID 11412092 DOI: 10.1021/Bi002857E  0.434
2001 Sergienko EA, Jordan F. Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products. Biochemistry. 40: 7369-7381. PMID 11412091 DOI: 10.1021/Bi002856M  0.392
2001 Liu M, Sergienko EA, Guo F, Wang J, Tittmann K, Hübner G, Furey W, Jordan F. Catalytic acid-base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions. Biochemistry. 40: 7355-68. PMID 11412090 DOI: 10.1021/Bi002855U  0.457
2001 Wang J, Golbik R, Seliger B, Spinka M, Tittmann K, Hübner G, Jordan F. Consequences of a modified putative substrate-activation site on catalysis by yeast pyruvate decarboxylase. Biochemistry. 40: 1755-1763. PMID 11327837 DOI: 10.1021/Bi001003R  0.415
2000 Sergienko EA, Wang J, Polovnikova L, Hasson MS, McLeish MJ, Kenyon GL, Jordan F. Spectroscopic detection of transient thiamin diphosphate-bound intermediates on benzoylformate decarboxylase. Biochemistry. 39: 13862-9. PMID 11076527 DOI: 10.1021/Bi001214W  0.406
1999 Jordan F. Interplay of organic and biological chemistry in understanding coenzyme mechanisms: Example of thiamin diphosphate-dependent decarboxylations of 2-oxo acids Febs Letters. 457: 298-301. PMID 10471796 DOI: 10.1016/S0014-5793(99)01061-3  0.383
1999 Li H, Jordan F. Effects of Substitution of Tryptophan 412 in the Substrate Activation Pathway of Yeast Pyruvate Decarboxylase Biochemistry. 38: 10004-10012. PMID 10433707 DOI: 10.1021/Bi9902440  0.311
1999 Li H, Furey W, Jordan F. Role of glutamate 91 in information transfer during substrate activation of yeast pyruvate decarboxylase. Biochemistry. 38: 9992-10003. PMID 10433706 DOI: 10.1021/Bi9902438  0.336
1999 Jordan F, Li H, Brown A. Remarkable Stabilization of Zwitterionic Intermediates May Account for a Billion-fold Rate Acceleration by Thiamin Diphosphate-Dependent Decarboxylases† Biochemistry. 38: 6369-6373. PMID 10350453 DOI: 10.1021/Bi990373G  0.42
1999 Eberhardt I, Cederberg H, Li H, König S, Jordan F, Hohmann S. Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity Febs Journal. 262: 191-201. PMID 10231381 DOI: 10.1046/J.1432-1327.1999.00370.X  0.318
1999 Bao D, Huskey WP, Kettner CA, Jordan F. Hydrogen bonding to active-site histidine in peptidyl boronic acid inhibitor complexes of chymotrypsin and subtilisin: Proton magnetic resonance assignments and H/D fractionation Journal of the American Chemical Society. 121: 4684-4689. DOI: 10.1021/Ja990180G  0.328
1998 Guo F, Zhang D, Kahyaoglu A, Farid RS, Jordan F. Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate- requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase Biochemistry. 37: 13379-13391. PMID 9748345 DOI: 10.1021/Bi9807097  0.404
1998 Jordan F, Nemeria N, Guo F, Baburina I, Gao Y, Kahyaoglu A, Li H, Wang J, Yi J, Guest JR, Furey W. Regulation of thiamin diphosphate-dependent 2-oxo acid decarboxylases by substrate and thiamin diphosphate.Mg(II) - evidence for tertiary and quaternary interactions. Biochimica Et Biophysica Acta. 1385: 287-306. PMID 9655921 DOI: 10.1016/S0167-4838(98)00075-2  0.617
1998 Furey W, Arjunan P, Chen L, Sax M, Guo F, Jordan F. Structure-function relationships and flexible tetramer assembly in pyruvate decarboxylase revealed by analysis of crystal structures. Biochimica Et Biophysica Acta. 1385: 253-70. PMID 9655915 DOI: 10.1016/S0167-4838(98)00073-9  0.371
1998 Pan K, Jordan F. D,L-S-methyllipoic acid methyl ester, a kinetically viable model for S-protonated lipoic acid as the oxidizing agent in reductive acyl transfers catalyzed by the 2-oxoacid dehydrogenase multienzyme complexes. Biochemistry. 37: 1357-64. PMID 9477964 DOI: 10.1021/Bi971835Y  0.52
1998 Baburina I, Dikdan G, Guo F, Tous GI, Root B, Jordan F. Reactivity at the substrate activation site of yeast pyruvate decarboxylase: inhibition by distortion of domain interactions. Biochemistry. 37: 1245-55. PMID 9477950 DOI: 10.1021/Bi9709912  0.41
1998 Baburina I, Li H, Bennion B, Furey W, Jordan F. Interdomain information transfer during substrate activation of yeast pyruvate decarboxylase: The interaction between cysteine 221 and histidine 92 Biochemistry. 37: 1235-1244. PMID 9477949 DOI: 10.1021/Bi970990+  0.385
1998 Nemeria N, Volkov A, Brown A, Yi J, Zipper L, Guest JR, Jordan F. Systematic study of the six cysteines of the E1 subunit of the pyruvate dehydrogenase multienzyme complex from Escherichia coli: none is essential for activity. Biochemistry. 37: 911-922. PMID 9454581 DOI: 10.1021/Bi9722251  0.404
1998 Bao D, Cheng †J-, Kettner aC, Jordan F. Assignment of the Nε2H and Nδ1H Resonances at the Active-Center Histidine in Chymotrypsin and Subtilisin Complexed to Peptideboronic Acids without Specific 15N Labeling1 Journal of the American Chemical Society. 120: 3485-3489. DOI: 10.1021/Ja972937E  0.34
1997 Kahyaoglu A, Haghjoo K, Guo F, Jordan F, Kettner C, Felföldi F, Polgár L. Low Barrier Hydrogen Bond Is Absent in the Catalytic Triads in the Ground State but Is Present in a Transition-state Complex in the Prolyl Oligopeptidase Family of Serine Proteases Journal of Biological Chemistry. 272: 25547-25554. PMID 9325271 DOI: 10.1074/Jbc.272.41.25547  0.377
1997 Brown A, Nemeria N, Yi J, Zhang D, Jordan WB, Machado RS, Guest JR, Jordan F. 2-Oxo-3-alkynoic acids, universal mechanism-based inactivators of thiamin diphosphate-dependent decarboxylases: synthesis and evidence for potent inactivation of the pyruvate dehydrogenase multienzyme complex. Biochemistry. 36: 8071-81. PMID 9201955 DOI: 10.1021/Bi970094Y  0.395
1997 Kahyaoglu A, Haghjoo K, Kraicsovits F, Jordan F, Polgar L. Benzyloxycarbonylprolylprolinal, a transition-state analogue for prolyl oligopeptidase, forms a tetrahedral adduct with catalytic serine, not a reactive cysteine Biochemical Journal. 322: 839-843. PMID 9148758 DOI: 10.1042/Bj3220839  0.312
1997 Barletta GL, Zou Y, Huskey WP, Jordan F. Kinetics of C(2α)-proton abstraction from 2-benzylthiazolium salts leading to enamines relevant to catalysis by thiamin-dependent enzymes Journal of the American Chemical Society. 119: 2356-2362. DOI: 10.1021/Ja9633528  0.342
1996 Yi J, Nemeria N, McNally A, Jordan F, Machado RS, Guest JR. Effect of substitutions in the thiamin diphosphate-magnesium fold on the activation of the pyruvate dehydrogenase complex from Escherichia coli by cofactors and substrate. The Journal of Biological Chemistry. 271: 33192-200. PMID 8969175 DOI: 10.1074/Jbc.271.52.33192  0.434
1996 Volkov A, Jordan F. Evidence for intramolecular processing of prosubtilisin sequestered on a solid support. Journal of Molecular Biology. 262: 595-599. PMID 8876640 DOI: 10.1006/Jmbi.1996.0538  0.419
1996 Baburina I, Moore DJ, Volkov A, Kahyaoglu A, Jordan F, Mendelsohn R. Three of four cysteines, including that responsible for substrate activation, are ionized at pH 6.0 in yeast pyruvate decarboxylase: evidence from Fourier transform infrared and isoelectric focusing studies. Biochemistry. 35: 10249-55. PMID 8756679 DOI: 10.1021/BI961141+  0.371
1996 Hu Z, Haghjoo K, Jordan F. Further Evidence For The Structure Of The Subtilisin Propeptide And For Its Interactions With Mature Subtilisin Journal of Biological Chemistry. 271: 3375-3384. PMID 8631936 DOI: 10.1074/Jbc.271.7.3375  0.336
1996 Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D, Jordan F. Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 A resolution. Journal of Molecular Biology. 256: 590-600. PMID 8604141 DOI: 10.1006/Jmbi.1996.0111  0.604
1996 Arjunan P, Chen L, Swaminathan S, Furey W, Sax M, Gao Y, Zhang D, Jordan F. Flexible assembly of pyruvate decarboxylase tetramers examined by comparison of multiple crystal forms Acta Crystallographica Section A. 52: 122-122. DOI: 10.1107/S0108767396094305  0.496
1996 Chiu CC, Chung A, Barletta G, Jordan F. Intramolecular Model for the Reductive Acyl Transfer Catalyzed by α-Keto Acid Dehydrogenases Journal of the American Chemical Society. 118: 11026-11029. DOI: 10.1021/Ja954322S  0.322
1995 McNally AJ, Motter K, Jordan F. A library of monoclonal antibodies to Escherichia coli K-12 pyruvate dehydrogenase complex. A biochemical analysis and their ability to inhibit the enzyme complex. Journal of Biological Chemistry. 270: 19736-19743. PMID 7649983 DOI: 10.1074/Jbc.270.34.19736  0.33
1995 Li Y, Hu Z, Jordan F, Inouye M. Functional analysis of the propeptide of subtilisin E as an intramolecular chaperone for protein folding. Refolding and inhibitory abilities of propeptide mutants. The Journal of Biological Chemistry. 270: 25127-32. PMID 7559646 DOI: 10.1074/Jbc.270.42.25127  0.352
1995 Zhong S, Haghjoo K, Kettner C, Jordan F. Proton magnetic resonance studies of the active center histidine of chymotrypsin complexed to peptideboronic acids: Solvent accessibility to the N.delta. and N.epsilon. sites can differentiate slow-binding and rapidly reversible inhibitors Journal of the American Chemical Society. 117: 7048-7055. DOI: 10.1021/Ja00132A002  0.332
1995 Chiu CC, Pan K, Jordan F. Modeling an Elementary Step of the Enzyme Pyruvate Oxidase: Oxidation of a Thiamin Diphosphate-Bound Enamine Intermediate by a Flavin Analog Journal of the American Chemical Society. 117: 7027-7028. DOI: 10.1021/Ja00131A036  0.53
1994 Hu Z, Zhu X, Jordan F, Inouye M. A covalently trapped folding intermediate of subtilisin E: spontaneous dimerization of a prosubtilisin E Ser49Cys mutant in vivo and its autoprocessing in vitro. Biochemistry. 33: 562-569. PMID 8286386 DOI: 10.1021/Bi00168A022  0.435
1994 Baburina I, Gao Y, Hu Z, Jordan F, Hohmann S, Furey W. Substrate activation of brewers' yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine. Biochemistry. 33: 5630-5. PMID 8180188 DOI: 10.1021/Bi00184A035  0.587
1994 Chiu CC, Jordan F. Novel Synthesis of 2-Oxo-4-phenyl-3-butynoic Acid, a New Inhibitor and Alternate Substrate of Pyruvate Decarboxylase Journal of Organic Chemistry. 59: 5763-5766. DOI: 10.1021/Jo00098A041  0.323
1993 Dyda F, Furey W, Swaminathan S, Sax M, Farrenkopf B, Jordan F. Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-A resolution. Biochemistry. 32: 6165-6170. PMID 8512926 DOI: 10.1021/Bi00075A008  0.399
1993 Jordan F. Role of Cysteines in the activation and inactivation of brewers' yeast pyruvate decarboxylase investigated with a PDC1-PDC6 fusion protein Biochemistry. 32: 2704-2709. PMID 8448127 DOI: 10.1021/Bi00061A031  0.422
1993 Muller YA, Lindqvist Y, Furey W, Schulz GE, Jordan F, Schneider G. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase Structure. 1: 95-103. PMID 8069629 DOI: 10.1016/0969-2126(93)90025-C  0.38
1992 Ohta Y, Hojo H, Aimoto S, Kobayashi T, Zhu X, Jordan F, Inouye M. Pro-peptide as an intramolecular chaperone: renaturation of denatured subtilisin E with a synthetic pro-peptide [corrected]. Molecular Microbiology. 5: 1507-10. PMID 1686294 DOI: 10.1111/J.1365-2958.1991.Tb00797.X  0.404
1992 McNally A, Jordan F. An immunochemical assay model system for the sensitive detection of pyruvate dehydrogenase complex (PDHc) and its decarboxylatingn subunit pyruvate dehydrogenase (E1) Biochimica Et Biophysica Acta. 1160: 179-187. PMID 1445944 DOI: 10.1016/0167-4838(92)90005-X  0.327
1992 Menon-Rudolph S, Nishikawa S, Zeng X, Jordan F. Rate of decarboxylation, monitored via the key enzyme-bound enamine, of conjugated .alpha.-keto acids by pyruvamide activated pyruvate decarboxylase is kinetically competent with turnover Journal of the American Chemical Society. 114: 10110-10112. DOI: 10.1021/Ja00052A003  0.425
1992 Farrenkopf BC, Jordan F. Resolution of brewer's yeast pyruvate decarboxylase into multiple isoforms with similar subunit structure and activity using high-performance liquid chromatography. Protein Expression and Purification. 3: 101-107. DOI: 10.1016/S1046-5928(05)80092-0  0.338
1991 Zeng X, Chung A, Haran M, Jordan F. Direct Observation of the Kinetic Fate of a Thiamin Diphosphate Bound Enamine Intermediate on Brewers’ Yeast Pyruvate Decarboxylase. Kinetic and Regiospecific Consequences of Allosteric Activation Journal of the American Chemical Society. 113: 5842-5849. DOI: 10.1021/Ja00015A044  0.374
1990 Tous G, Bush A, Tous A, Jordan F. O'-(epoxyalkyl)tyrosines and (epoxyalkyl)phenylalanine as irreversible inactivators of serine proteases: synthesis and inhibition mechanism. Journal of Medicinal Chemistry. 33: 1620-1634. PMID 2187995 DOI: 10.1021/Jm00168A015  0.344
1990 Barletta G, Chung AC, Rios CB, Jordan F, Schlegel JM. Electrochemical oxidation of enamines related to the key intermediate on thiamin diphosphate dependent enzymic pathways: evidence for one-electron oxidation via a thiazolium cation radical Journal of the American Chemical Society. 112: 8144-8149. DOI: 10.1021/Ja00178A044  0.375
1990 Annan N, Jordan F. Flavo Pyruvate Decarboxylase: A Semisynthetic Enzyme Model for Pyruvate Oxidase and Acetolactate Synthetase Journal of the American Chemical Society. 112: 3222-3223. DOI: 10.1021/Ja00164A059  0.356
1989 Adebodun F, Jordan F. Multinuclear magnetic resonance studies on serine protease transition state analogues. Journal of Cellular Biochemistry. 40: 249-260. PMID 2768349 DOI: 10.1002/Jcb.240400213  0.418
1989 Zhu XL, Ohta Y, Jordan F, Inouye M. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature. 339: 483-4. PMID 2657436 DOI: 10.1038/339483A0  0.352
1989 Annan N, Paris R, Jordan F. (E)-4-(.alpha.-Halo-p-tolyl)-2-oxo-3-butenoic acids inhibit yeast pyruvate decarboxylase by a diversity of mechanisms: multiple fate for the thiamin-bound enamine intermediate Journal of the American Chemical Society. 111: 8895-8901. DOI: 10.1021/Ja00206A019  0.391
1987 Jordan F, Kudzin ZH, Rios CB. Generation and physical properties of enamines related to the key intermediate in thiamin diphosphate-dependent enzymic pathways Journal of the American Chemical Society. 109: 4415-4416. DOI: 10.1021/Ja00248A059  0.332
1986 Jordan F, Adams J, Farzami B, Kudzin ZH. Conjugated α-Keto Acids as Mechanism-Based Inactivators of Brewer's Yeast Pyruvate Decarboxylase Electronic effects of Substituents and Detection of a Long-Lived Intermediate Journal of Enzyme Inhibition. 1: 139-149. PMID 3334240 DOI: 10.3109/14756368609020112  0.378
1986 Jordan F, Kudzin ZH, Kuo DJ. Enzyme‐generated Model for the Reductive Acetylation of Lipoyl‐E2 by E1 in the Pyruvate Dehydrogenase Multienzyme Complexa Annals of the New York Academy of Sciences. 471: 308-309. DOI: 10.1111/J.1749-6632.1986.Tb48050.X  0.347
1985 Jordan F, Polgar L, Tous G. Proton magnetic resonance studies of the states of ionization of histidines in native and modified subtilisins. Biochemistry. 24: 7711-7717. PMID 3912007 DOI: 10.1021/Bi00347A031  0.352
1984 Chen GC, Jordan F. Brewers' yeast pyruvate decarboxylase produces acetoin from acetaldehyde: a novel tool to study the mechanism of steps subsequent to carbon dioxide loss Biochemistry. 23: 3576-3582. PMID 6383467 DOI: 10.1021/Bi00311A002  0.4
1983 Kuo DJ, Jordan F. Active site directed irreversible inactivation of brewers' yeast pyruvate decarboxylase by the conjugated substrate analogue (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid: development of a suicide substrate. Biochemistry. 22: 3735-3740. PMID 6351910 DOI: 10.1021/Bi00285A003  0.402
1983 Jordan F, Fathi R. Mechanisms of phosphate transfer on the purine salvage pathway Phosphorus Sulfur and Silicon and the Related Elements. 18: 341-344. DOI: 10.1080/03086648308076035  0.304
1982 Salamone SJ, Jordan F. Synthesis of 9-(3,4-dioxopentyl)hypoxanthine, the first arginine-directed purine derivative: an irreversible inactivator for purine nucleoside phosphorylase. Biochemistry. 21: 6383-8. PMID 6817790 DOI: 10.1021/Bi00268A010  0.38
1982 Jordan F. Role of the aminopyridine ring in thiamin-catalyzed reactions. II. Proton NMR evidence for high barriers to amino group rotation in 4-aminopyrimidines, including thiamin, at low pH in water Journal of Organic Chemistry. 13: 2748-2753. DOI: 10.1021/Jo00135A012  0.306
1982 Jordan F, Kuo DJ, Salamone SJ, Wang AL. Determination of the scissile bond in the hydrolysis of α-d-ribofuranose 1-phosphate by alkaline phosphatase, acid phosphatase and formic acid and in its conversion to d-ribose 5-phosphate by phosphoglucomutase. 18O shift on the 31P-NMR and mass spectroscopic evidence Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 704: 427-436. DOI: 10.1016/0167-4838(82)90064-4  0.305
1981 Jordan F, Polgár L. Proton nuclear magnetic resonance evidence for the absence of a stable hydrogen bond between the active site aspartate and histidine residues of native subtilisins and for its presence in thiolsubtilisins. Biochemistry. 20: 6366-6370. PMID 7030388 DOI: 10.1021/Bi00525A013  0.43
1981 Jordan F, Bahr H, Patrick J, Woo PWK. Nuclear magnetic resonance studies on wheat germ agglutinin-monomeric amino sugar interactions. Archives of Biochemistry and Biophysics. 207: 81-86. PMID 6894523 DOI: 10.1016/0003-9861(81)90011-4  0.314
1979 Jordan F, Wu A. Stereoelectronic factors in the binding of substrate analogues and inhibitors to purine nucleoside phosphorylase isolated from human erythrocytes. Journal of Medicinal Chemistry. 21: 877-82. PMID 31484 DOI: 10.1021/Jm00207A008  0.415
1978 Jordan F, Wu A. Inactivation of purine nucleoside phosphorylase by modification of arginine residues. Archives of Biochemistry and Biophysics. 190: 699-704. PMID 102259 DOI: 10.1016/0003-9861(78)90329-6  0.386
1978 Hall SS, Doweyko AM, Jordan F. Glyoxalase I enzyme studies. 4. General base catalyzed enediol proton transfer rearrangement of methyl- and phenylglyoxalglutathionylhemithiol acetal to S-lactoyl- and S-mandeloylglutathione followed by hydrolysis. A model for the glyoxalase enzyme system Journal of the American Chemical Society. 100: 5934-5939. DOI: 10.1021/Ja00486A054  0.364
1978 Jordan F, Kuo DJ, Monse EU. Carbon Kinetic Isotope Effects on Pyruvate Decarboxylation Catalyzed by Yeast Pyruvate Decarboxylase and Models Journal of the American Chemical Society. 100: 2872-2878. DOI: 10.1021/Ja00477A050  0.319
1977 Jordan F, Niv H. C8-amino purine nucleosides. A well-defined steric determinant of glycosyl conformational preferences. Biochimica Et Biophysica Acta. 476: 265-271. PMID 884102 DOI: 10.1016/0005-2787(77)90290-8  0.316
1977 Jordan F, Bassett E, Redwood WR. Proton magnetic resonance studies on wheat germ agglutinin-amino sugar interaction. Evidence for involvement of a tryptophan residue in the binding process. Biochemical and Biophysical Research Communications. 75: 1015-21. PMID 871315 DOI: 10.1016/0006-291X(77)91483-8  0.329
1977 Jordan F, Niv H. Glycosyl conformational and inductive effects on the acid catalysed hydrolysis of purine nucleosides. Nucleic Acids Research. 4: 697-709. PMID 17100 DOI: 10.1093/Nar/4.3.697  0.348
1977 Jordan F, Farzami B. Solvent effects on thiamine–enzyme model interactions. 2,3,4-Trimethylthiazolium iodide, a model for interaction with negative charges Journal of the Chemical Society-Perkin Transactions 1. 8: 1484-1486. DOI: 10.1039/P29770001484  0.308
1977 Hall SS, Doweyko AM, Jordan F. Glyoxalase I Enzyme Studies. 2. Nuclear Magnetic Resonance Evidence For An Enediol-Proton Transfer Mechanism Cheminform. 8. DOI: 10.1002/Chin.197707072  0.306
1976 Hall SS, Doweyko AM, Jordan F. Glyoxalase I enzyme studies. 2. Nuclear magnetic resonance evidence for an enediol-proton transfer mechanism. Journal of the American Chemical Society. 98: 7460-1. PMID 977876 DOI: 10.1021/Ja00439A077  0.306
1974 Jordan F. Semiempirical calculations on the electronic structure and preferred conformations of thiamine (vitamin B1) and thiamine pyrophosphate (cocarboxylase) Journal of the American Chemical Society. 96: 3623-3630. PMID 4833720 DOI: 10.1021/Ja00818A041  0.338
1974 Jordan F. Effect of protonation on electronic structure of guanosine and 5' guanosine monophosphate and on glycosidic (C-N) bond rotations Biopolymers. 13: 289-306. PMID 4820062 DOI: 10.1002/Bip.1974.360130205  0.318
1974 Jordan F. Purine carbon-8 substituent as probe of the electronic structures of adenine and guanine. A computational study Journal of the American Chemical Society. 96: 5911-5917. PMID 4415404 DOI: 10.1021/Ja00825A031  0.304
1973 Jordan F. Molecular orbital (CNDO/2 and MINDO) calculations on protonated deoxyribonucleic acid bases. The effects of base protonation on intermolecular interactions Journal of the American Chemical Society. 95: 6544-6554. PMID 4746272 DOI: 10.1021/Ja00801A004  0.309
1973 Jordan F. The electronic structure of and conformational energy barrier to rotation around the CN glycosidic linkage in adenosine-3′, 5′-cyclicmonophosphate (cyclic AMP) and its phosphonate analog Journal of Theoretical Biology. 41: 23-40. PMID 4356844 DOI: 10.1016/0022-5193(73)90187-2  0.324
1970 Diner S, Malrieu JP, Jordan F, Claverie P. Use of perturbation methods for the study of configuration interaction effects - IV. Localized SCF orbitals and second-order energy correction Theoretica Chimica Acta. 18: 86-97. DOI: 10.1007/Bf00529128  0.548
1968 Jordan F, Pullman B. Extended Hückel calculations on the conformation and structure of thymine photodimers Theoretical Chemistry Accounts. 10: 423-434. DOI: 10.1007/Bf00528773  0.466
Show low-probability matches.