cached image

John D. Chodera, Ph.D.

Affiliations: 
1999-2006 Graduate Group in Biophysics University of California, San Francisco, San Francisco, CA 
 2007-2008 Chemistry Stanford University, Palo Alto, CA 
 2008-2012 QB3 University of California, Berkeley, Berkeley, CA, United States 
 2012- Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center, Rockville Centre, NY, United States 
Area:
drug discovery, computational biophysics, protein folding and stability
Website:
http://choderalab.org
Google:
"John Chodera"
Mean distance: 9.43
 
SNBCP

Parents

Sign in to add mentor
William C. Swope research assistant 2005-2005 IBM Research - Almaden
 (IBM Research Predoctoral Fellowship)
Ken A. Dill grad student 2006 UCSF
 (Master equation models of macromolecular dynamics from atomistic simulation.)
Vijay S. Pande post-doc 2007-2008 Stanford
Phillip L. Geissler post-doc 2008-2012 UC Berkeley

Collaborators

Sign in to add collaborator
David A. Sivak collaborator
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

de Castro RL, Rodríguez-Guerra J, Schaller D, et al. (2024) Lessons learned during the journey of data: from experiment to model for predicting kinase affinity, selectivity, polypharmacology, and resistance. Biorxiv : the Preprint Server For Biology
Takaba K, Friedman AJ, Cavender CE, et al. (2024) Machine-learned molecular mechanics force fields from large-scale quantum chemical data. Chemical Science. 15: 12861-12878
Zhang I, Rufa DA, Pulido I, et al. (2024) Correction to Identifying and Overcoming the Sampling Challenges in Relative Binding Free Energy Calculations of a Model Protein:Protein Complex. Journal of Chemical Theory and Computation
Eastman P, Galvelis R, Peláez RP, et al. (2023) OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials. The Journal of Physical Chemistry. B
Outhwaite IR, Singh S, Berger BT, et al. (2023) Death by a thousand cuts through kinase inhibitor combinations that maximize selectivity and enable rational multitargeting. Elife. 12
Eastman P, Galvelis R, Peláez RP, et al. (2023) OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials. Arxiv
Boby ML, Fearon D, Ferla M, et al. (2023) Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors. Science (New York, N.Y.). 382: eabo7201
Galvelis R, Varela-Rial A, Doerr S, et al. (2023) NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics. Journal of Chemical Information and Modeling. 63: 5701-5708
Zhang I, Rufa DA, Pulido I, et al. (2023) Identifying and Overcoming the Sampling Challenges in Relative Binding Free Energy Calculations of a Model Protein:Protein Complex. Journal of Chemical Theory and Computation
Boothroyd S, Behara PK, Madin OC, et al. (2023) Development and Benchmarking of Open Force Field 2.0.0: The Sage Small Molecule Force Field. Journal of Chemical Theory and Computation
See more...