John D. Joannopoulos

Chemistry Massachusetts Institute of Technology, Cambridge, MA, United States 
theoretical description of the properties of material systems, photonic crystals
"John Joannopoulos"

Mean distance: 10.41
Cross-listing: Physics Tree


Sign in to add mentor
Marvin L. Cohen grad student 1974 UC Berkeley (Physics Tree)
 (Electronic structure of complex crystalline and amorphous semiconductors)


Sign in to add trainee
Shanhui Fan grad student (E-Tree)
Dung-Hai Lee grad student MIT (Physics Tree)
Eugene Mele grad student MIT (Physics Tree)
Robert B. Laughlin grad student 1979 MIT (Physics Tree)
David Hamilton Vanderbilt grad student 1981 MIT (Astronomy Tree)
A Douglas Stone grad student 1982 MIT (Physics Tree)
Efthimios Kaxiras grad student 1987 MIT
Karin M. Rabe grad student 1987 MIT (Astronomy Tree)
Eugen Tarnow grad student 1989 MIT (Physics Tree)
Tomás A. Arias grad student 1992 MIT (Physics Tree)
Mike C. Payne grad student 1992 MIT (Physics Tree)
Andrew M. Rappe grad student 1992 MIT
Kyeongjae Cho grad student 1994 (Neurotree)
Rodrigo Barbosa Capaz grad student 1996 MIT (Physics Tree)
Yoel Fink grad student 2000 MIT (E-Tree)
Steven G. Johnson grad student 2001 MIT (Physics Tree)
Evan J. Reed grad student 1998-2003 (E-Tree)
KC Huang grad student 1999-2004 MIT
Michelle Povinelli grad student 1999-2004 MIT (Physics Tree)
Elefterios Lidorikis grad student 2001-2004 MIT (Astronomy Tree)
Nikolaj Moll post-doc 1998-2000 MIT (Physics Tree)
Prineha Narang post-doc 2016-2017 MIT (Physics Tree)


Sign in to add collaborator
Paul D Bristowe collaborator 1986-1992 MIT (E-Tree)
BETA: Related publications


You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Roques-Carmes C, Salamin Y, Sloan J, et al. (2023) Biasing the quantum vacuum to control macroscopic probability distributions. Science (New York, N.Y.). 381: 205-209
Rivera N, Sloan J, Salamin Y, et al. (2023) Creating large Fock states and massively squeezed states in optics using systems with nonlinear bound states in the continuum. Proceedings of the National Academy of Sciences of the United States of America. 120: e2219208120
Yang Y, Roques-Carmes C, Kooi SE, et al. (2023) Photonic flatband resonances for free-electron radiation. Nature. 613: 42-47
Yan W, Noel G, Loke G, et al. (2022) Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature
Roques-Carmes C, Rivera N, Ghorashi A, et al. (2022) A framework for scintillation in nanophotonics. Science (New York, N.Y.). 375: eabm9293
Yin K, Qu Y, Kooi SE, et al. (2021) Enabling Manufacturable Optical Broadband Angular-Range Selective Films. Acs Nano
Lin X, Hu H, Easo S, et al. (2021) A Brewster route to Cherenkov detectors. Nature Communications. 12: 5554
Sloan J, Rivera N, Joannopoulos JD, et al. (2021) Casimir Light in Dispersive Nanophotonics. Physical Review Letters. 127: 053603
Loke G, Khudiyev T, Wang B, et al. (2021) Digital electronics in fibres enable fabric-based machine-learning inference. Nature Communications. 12: 3317
Yang Y, Zhen B, Joannopoulos JD, et al. (2021) Author Correction: Non-Abelian generalizations of the Hofstadter model: spin-orbit-coupled butterfly pairs. Light, Science & Applications. 10: 73
See more...