Johannes Hachmann, Ph.D., M.Sc., Dipl.-Chem.,

Chemical and Biological Engineering State University of New York, Buffalo, Buffalo, NY, United States 
Theoretical Chemistry, Quantum Chemistry, Computational Chemistry, Molecular Modeling, Computational Materials Science
"Johannes Hachmann"
Mean distance: 9.04


Sign in to add mentor
Ulrich-Walter Grummt research assistant 2001-2002 Universität Jena
James  F. Weston research assistant 2003-2003 Universität Jena
Hans-Gerhard Fritsche research assistant 2003-2004 Universität Jena
Nicholas C. Handy research assistant 2003-2004 Cambridge
Garnet K.L. Chan grad student 2004-2010 Cornell
 (Ab initio density matrix renormalization group methodology and computational transition metal chemistry.)
Alán Aspuru-Guzik post-doc 2009-2014 Harvard


Sign in to add trainee
Sai Prasad Ganesh research assistant 2014- SUNY Buffalo
Zachary Manzer research assistant 2014- SUNY Buffalo
Bryan A. Moore research assistant 2014- SUNY Buffalo
Sykhere Brown research assistant 2017- SUNY Buffalo
Mohammad Atif Faiz Afzal grad student 2014- SUNY Buffalo
Mojtaba Haghighatlari grad student 2014- SUNY Buffalo
Jun Pan grad student 2014- SUNY Buffalo
Ching-Yen Shih grad student 2014- SUNY Buffalo
Shawn S. Zadeh grad student 2014- SUNY Buffalo
Aditya Sonpal grad student 2016- SUNY Buffalo
Andrew J. Schultz research scientist 2014- SUNY Buffalo
BETA: Related publications


You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Haghighatlari M, Vishwakarma G, Altarawy D, et al. (2020) ChemML: A Machine Learning and Informatics Program Package for the Analysis, Mining, and Modeling of Chemical and Materials Data Wiley Interdisciplinary Reviews: Computational Molecular Science. 10
Afzal MAF, Sonpal A, Haghighatlari M, et al. (2019) A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules. Chemical Science. 10: 8374-8383
Afzal MAF, Hachmann J. (2019) Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers. Physical Chemistry Chemical Physics : Pccp
Afzal MAF, Haghighatlari M, Ganesh SP, et al. (2019) Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining The Journal of Physical Chemistry C. 123: 14610-14618
Haghighatlari M, Hachmann J. (2019) Advances of machine learning in molecular modeling and simulation Current Opinion in Chemical Engineering. 23: 51-57
Afzal MAF, Cheng C, Hachmann J. (2018) Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers. The Journal of Chemical Physics. 148: 241712
Hachmann J, Afzal MAF, Haghighatlari M, et al. (2018) Building and deploying a cyberinfrastructure for the data-driven design of chemical systems and the exploration of chemical space Molecular Simulation. 44: 921-929
Lopez SA, Pyzer-Knapp EO, Simm GN, et al. (2016) The Harvard organic photovoltaic dataset. Scientific Data. 3: 160086
Hachmann J, Olivares-Amaya R, Jinich A, et al. (2014) Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry-the Harvard Clean Energy Project Energy and Environmental Science. 7: 698-704
Amador-Bedolla C, Olivares-Amaya R, Hachmann J, et al. (2013) Organic Photovoltaics Informatics For Materials Science and Engineering: Data-Driven Discovery For Accelerated Experimentation and Application. 423-442
See more...