David P. Bartel, Ph.D.

Affiliations: 
Biology Massachusetts Institute of Technology, Cambridge, MA, United States 
Area:
"RNA World", regulation of gene expression by small RNAs found in animal and plant cells
Website:
https://biology.mit.edu/people/david_bartel
Google:
"David P. Bartel"
Bio:

http://www.nasonline.org/member-directory/members/20024805.html
http://bartellab.wi.mit.edu/home.html
http://www.hhmi.org/research/investigators/bartel_bio.html
http://bartellab.wi.mit.edu/Lab_alumni.html

Mean distance: 8.61
 
SNBCP
Cross-listing: Astrobiology Academic Family Tree

Parents

Sign in to add mentor
Jack W. Szostak grad student 1993 Harvard
 (RNA recognition and catalysis : I. New ribozymes from random sequences ; II. The HIV rev-RRE interaction)

Children

Sign in to add trainee
Margy E. Glasner grad student
Nicholas H. Bergman grad student 1995-2001 MIT
Michael S. Lawrence grad student 1998-2005 MIT (Cell Biology Tree)
Michael J. Axtell post-doc (Microtree)
Michelle M. Frank post-doc Whitehead Institute (MIT) (Neurotree)
Christine Mayr post-doc MIT
Thomas Tuschl post-doc MIT
Phillip D. Zamore post-doc MIT (FlyTree)
Arash Latifkar post-doc 2020- MIT
Ulrich F. Müller post-doc 2001-2006 Whitehead Institute for Biomedical Research
Xuebing Wu post-doc 2014-2018 MIT (Computational Biology Tree)
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Shi CY, Elcavage LE, Chivukula RR, et al. (2023) ZSWIM8 destabilizes many murine microRNAs and is required for proper embryonic growth and development. Genome Research
Wang PY, Bartel DP. (2023) A statistical approach for identifying primary substrates of ZSWIM8-mediated microRNA degradation in small-RNA sequencing data. Bmc Bioinformatics. 24: 195
Kingston ER, Blodgett LW, Bartel DP. (2022) Endogenous transcripts direct microRNA degradation in Drosophila, and this targeted degradation is required for proper embryonic development. Molecular Cell
McGeary SE, Bisaria N, Pham TM, et al. (2022) MicroRNA 3'-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position. Elife. 11
Kingston ER, Bartel DP. (2021) Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2'-O-methylation. Rna (New York, N.Y.)
Shi CY, Kingston ER, Kleaveland B, et al. (2020) The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science (New York, N.Y.)
Briskin D, Wang PY, Bartel DP. (2020) The biochemical basis for the cooperative action of microRNAs. Proceedings of the National Academy of Sciences of the United States of America
Getz MA, Weinberg DE, Drinnenberg IA, et al. (2020) Xrn1p acts at multiple steps in the budding-yeast RNAi pathway to enhance the efficiency of silencing. Nucleic Acids Research
Fang W, Bartel DP. (2020) MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Molecular Cell. 78: 289-302.e6
Eisen TJ, Eichhorn SW, Subtelny AO, et al. (2019) The Dynamics of Cytoplasmic mRNA Metabolism. Molecular Cell
See more...