Johannes T. Margraf

Affiliations: 
Fritz-Haber-Institute of the Max-Planck-Society 
Area:
Quantum Chemistry, Machine Learning
Google:
"Johannes Margraf"
Mean distance: (not calculated yet)
 
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Keller E, Blum V, Reuter K, et al. (2025) Exploring atom-pairwise and many-body dispersion corrections for the BEEF-vdW functional. The Journal of Chemical Physics. 162
Keller E, Morgenstein J, Reuter K, et al. (2024) Small basis set density functional theory method for cost-efficient, large-scale condensed matter simulations. The Journal of Chemical Physics. 161
Cui M, Reuter K, Margraf JT. (2024) Obtaining Robust Density Functional Tight-Binding Parameters for Solids across the Periodic Table. Journal of Chemical Theory and Computation. 20: 5276-5290
Rein V, Gao H, Heenen HH, et al. (2024) Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Deposition. Acs Nano
Xu W, Diesen E, He T, et al. (2024) Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization. Journal of the American Chemical Society. 146: 7698-7707
Stocker S, Jung H, Csányi G, et al. (2023) Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration. Journal of Chemical Theory and Computation. 19: 6796-6804
Vondrák M, Reuter K, Margraf JT. (2023) q-pac: A Python package for machine learned charge equilibration models. The Journal of Chemical Physics. 159
Chen K, Kunkel C, Cheng B, et al. (2023) Physics-inspired machine learning of localized intensive properties. Chemical Science. 14: 4913-4922
Kube P, Dong J, Bastardo NS, et al. (2022) Green synthesis of propylene oxide directly from propane. Nature Communications. 13: 7504
Staacke CG, Huss T, Margraf JT, et al. (2022) Tackling Structural Complexity in LiS-PS Solid-State Electrolytes Using Machine Learning Potentials. Nanomaterials (Basel, Switzerland). 12
See more...