Year |
Citation |
Score |
2019 |
Overton K, Greer H, Ferguson MA, Spain EM, Elmore DE, Nunez ME, Volle C. Qualitative and Quantitative Changes to E. coli During Treatment with Magainin 2 Observed in Native Conditions by Atomic Force Microscopy. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 31876422 DOI: 10.1021/Acs.Langmuir.9B02726 |
0.347 |
|
2019 |
Perez CP, Elmore DE, Radhakrishnan ML. Computationally Modeling Electrostatic Binding Energetics in a Crowded, Dynamic Environment: Physical Insights from a Peptide-DNA System. The Journal of Physical Chemistry. B. PMID 31751509 DOI: 10.1021/Acs.Jpcb.9B09478 |
0.332 |
|
2019 |
Buck AK, Elmore DE, Darling LE. Using fluorescence microscopy to shed light on the mechanisms of antimicrobial peptides. Future Medicinal Chemistry. PMID 31517514 DOI: 10.4155/Fmc-2019-0095 |
0.373 |
|
2019 |
Wade HM, Darling LEO, Elmore DE. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization. Biochimica Et Biophysica Acta. Biomembranes. PMID 31067436 DOI: 10.1016/J.Bbamem.2019.05.002 |
0.378 |
|
2019 |
Gao K, Elmore DE. Can Molecular Dynamics Simulations Predict the Effect of Truncating Histone-Derived Antimicrobial Peptides? Biophysical Journal. 116: 84a. DOI: 10.1016/J.Bpj.2018.11.497 |
0.34 |
|
2019 |
Young Kwag J, Klim H, Elmore DE. Characterization of Hybrids Made from Two Membrane Translocating Antimicrobial Peptides Biophysical Journal. 116: 82a. DOI: 10.1016/J.Bpj.2018.11.489 |
0.375 |
|
2019 |
Buck AK, Darling LE, Elmore DE. Combining Design Strategies in Engineering More Active Hybrid Antimicrobial Peptides Biophysical Journal. 116: 44a. DOI: 10.1016/J.Bpj.2018.11.281 |
0.311 |
|
2018 |
Figueroa DM, Wade HM, Montales KP, Elmore DE, Darling LEO. Production and Visualization of Bacterial Spheroplasts and Protoplasts to Characterize Antimicrobial Peptide Localization. Journal of Visualized Experiments : Jove. PMID 30148492 DOI: 10.3791/57904 |
0.384 |
|
2018 |
Schmidt HB, Radhakrishnan ML, Elmore DE. Effects of Macromolecular Crowding on Antimicrobial Peptide Activity Biophysical Journal. 114: 456a. DOI: 10.1016/J.Bpj.2017.11.2521 |
0.341 |
|
2018 |
Perez CP, Elmore DE, Radhakrishnan ML. Macromolecular Crowding Effects on Energetic Residue Contributions to Peptide-Nucleic Acid Interactions Biophysical Journal. 114: 456a. DOI: 10.1016/J.Bpj.2017.11.2520 |
0.357 |
|
2018 |
Montales KP, Wade HM, Figueroa DM, Darling LE, Elmore DE. Characterizing Changes in Antimicrobial Peptide Mechanism Against Different Bacterial Strains Biophysical Journal. 114: 456a. DOI: 10.1016/J.Bpj.2017.11.2518 |
0.331 |
|
2018 |
Kranc SN, Elmore DE. Understanding the Effect of Cationic Residue Identity on Lipid Interactions of Translocating Antimicrobial Peptides Biophysical Journal. 114: 455a. DOI: 10.1016/J.Bpj.2017.11.2513 |
0.412 |
|
2018 |
Wade HM, Darling LE, Elmore DE. Systematic Analysis of Hybrid Antimicrobial Peptides Biophysical Journal. 114: 453a. DOI: 10.1016/J.Bpj.2017.11.2503 |
0.338 |
|
2017 |
Sim S, Wang P, Beyer BN, Cutrona KJ, Radhakrishnan ML, Elmore DE. Investigating the Nucleic Acid Interactions of Histone-Derived Antimicrobial Peptides. Febs Letters. PMID 28130840 DOI: 10.1002/1873-3468.12574 |
0.395 |
|
2017 |
Wade HM, Darling LE, Elmore DE. Development of Refined Bacterial Spheroplast Analyses to Characterize Hybrid Antimicrobial Peptides Biophysical Journal. 112: 382a. DOI: 10.1016/J.Bpj.2016.11.2076 |
0.352 |
|
2017 |
Figueroa DM, Elmore DE. Development of Cell-Wall Deficient Bacteria for the Characterization of Histone-Derived Antimicrobial Peptides through Confocal Microscopy Biophysical Journal. 112: 380a. DOI: 10.1016/J.Bpj.2016.11.2064 |
0.326 |
|
2016 |
Wei L, LaBouyer M, Darling LE, Elmore DE. Bacterial Spheroplasts as a Model for Visualizing Membrane Translocation of Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy. PMID 27431217 DOI: 10.1128/Aac.01008-16 |
0.381 |
|
2016 |
Sim S, Cutrona KJ, Beyer B, Wang P, Radhakrishnan ML, Elmore DE. Characterization of Nucleic Acid Binding by the Histone-Derived Antimicrobial Peptides Buforin II and DesHDAP1 Biophysical Journal. 110: 560a-561a. DOI: 10.1016/J.Bpj.2015.11.2997 |
0.415 |
|
2016 |
Heller LC, Akamandisa M, Elmore DE. Computational Prediction of Lipid Binding Profiles for Sec14-Like Domains Biophysical Journal. 110: 420a. DOI: 10.1016/J.Bpj.2015.11.2269 |
0.327 |
|
2016 |
Lee SH, Elmore DE. Using Molecular Dynamics Simulations to Characterize the Role Played by Basic Residues in Interactions of HDAPs and Bacterial Lipid Membranes Biophysical Journal. 110: 416a. DOI: 10.1016/J.Bpj.2015.11.2250 |
0.446 |
|
2016 |
Figueroa D, Perez C, Elmore DE. The Role of Arginine and Lysine in Histone Derived Antimicrobial Peptides Biophysical Journal. 110: 416a. DOI: 10.1016/J.Bpj.2015.11.2249 |
0.36 |
|
2016 |
Wei L, Elmore DE. Adaptation of Escherichia Coli Spheroplasts to the Characterization of Antimicrobial Peptides Biophysical Journal. 110: 4-6. DOI: 10.1016/J.Bpj.2015.11.2248 |
0.367 |
|
2016 |
Yuan A, Mourtada R, Elmore DE, Walensky LD. Investigating the Relationship Between Helicity and Activity in Antimicrobial Peptides with Stabilized α-Helical Structures Biophysical Journal. 110: 415a-416a. DOI: 10.1016/J.Bpj.2015.11.2247 |
0.404 |
|
2015 |
Cutrona KJ, Kaufman BA, Figueroa DM, Elmore DE. Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. Febs Letters. PMID 26555191 DOI: 10.1016/J.Febslet.2015.11.002 |
0.382 |
|
2015 |
Sim S, Wang P, Beyer B, Radhakrishnan ML, Elmore DE. Effects of Cationic Residues and Base Sequence in Nucleic Acid Binding of Histone-Derived Antimicrobial Peptides Biophysical Journal. 108: 74a. DOI: 10.1016/J.Bpj.2014.11.437 |
0.405 |
|
2015 |
LaBouyer MA, Elmore DE. Studying the Mechanisms of Hybrid Peptides Containing Permeabalizing and Cell Penetrating Domains Biophysical Journal. 108: 551a. DOI: 10.1016/J.Bpj.2014.11.3024 |
0.393 |
|
2015 |
Akamandisa M, Kedaigle AJ, Radhakrishnan ML, Peterman TK, Elmore DE. Investigating Sec14 Domain Lipid Binding using Structural Modeling Biophysical Journal. 108: 252a. DOI: 10.1016/J.Bpj.2014.11.1396 |
0.715 |
|
2014 |
Malcolm HR, Heo YY, Elmore DE, Maurer JA. Heteromultimerization of prokaryotic bacterial cyclic nucleotide-gated (bCNG) ion channels, members of the mechanosensitive channel of small conductance (MscS) superfamily. Biochemistry. 53: 8005-7. PMID 25493556 DOI: 10.1021/Bi501118C |
0.685 |
|
2014 |
Bustillo ME, Fischer AL, LaBouyer MA, Klaips JA, Webb AC, Elmore DE. Modular analysis of hipposin, a histone-derived antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments. Biochimica Et Biophysica Acta. 1838: 2228-33. PMID 24747525 DOI: 10.1016/J.Bbamem.2014.04.010 |
0.736 |
|
2013 |
Fischer AL, Bustillo M, Elmore DE. A Modular Approach to the Histone H2A Family of Antimicrobial Peptides The Faseb Journal. 27. DOI: 10.1096/Fasebj.27.1_Supplement.1021.4 |
0.369 |
|
2012 |
Malcolm HR, Heo YY, Caldwell DB, McConnell JK, Hawkins JF, Guayasamin RC, Elmore DE, Maurer JA. Ss-bCNGa: a unique member of the bacterial cyclic nucleotide gated (bCNG) channel family that gates in response to mechanical tension. European Biophysics Journal : Ebj. 41: 1003-13. PMID 23052972 DOI: 10.1007/S00249-012-0855-Z |
0.698 |
|
2012 |
Elmore DE. Insights into buforin II membrane translocation from molecular dynamics simulations. Peptides. 38: 357-62. PMID 23022591 DOI: 10.1016/J.Peptides.2012.09.022 |
0.428 |
|
2012 |
Spinella SA, Nelson RB, Elmore DE. Measuring peptide translocation into large unilamellar vesicles. Journal of Visualized Experiments : Jove. e3571. PMID 22314806 DOI: 10.3791/3571 |
0.399 |
|
2012 |
Pavia KE, Spinella SA, Elmore DE. Novel histone-derived antimicrobial peptides use different antimicrobial mechanisms. Biochimica Et Biophysica Acta. 1818: 869-76. PMID 22230351 DOI: 10.1016/J.Bbamem.2011.12.023 |
0.412 |
|
2012 |
Malcolm HR, Elmore DE, Maurer JA. Mechanosensitive behavior of bacterial cyclic nucleotide gated (bCNG) ion channels: Insights into the mechanism of channel gating in the mechanosensitive channel of small conductance superfamily. Biochemical and Biophysical Research Communications. 417: 972-6. PMID 22206667 DOI: 10.1016/J.Bbrc.2011.12.049 |
0.7 |
|
2012 |
Malcolm HR, Elmore DE, Maurer JA. Exploring the Co-Mutlimerization of bCNG Channels Biophysical Journal. 102: 121a. DOI: 10.1016/J.Bpj.2011.11.677 |
0.686 |
|
2011 |
Malcolm HR, Heo YY, Elmore DE, Maurer JA. Defining the role of the tension sensor in the mechanosensitive channel of small conductance. Biophysical Journal. 101: 345-52. PMID 21767486 DOI: 10.1016/J.Bpj.2011.05.058 |
0.701 |
|
2011 |
Xie Y, Fleming E, Chen JL, Elmore DE. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides. 32: 677-82. PMID 21277926 DOI: 10.1016/J.Peptides.2011.01.010 |
0.409 |
|
2011 |
Malcolm HR, Elmore DE, Maurer JA. Exploring the Response of Bacterial Cyclic Nucleotide Gated (bCNG) Ion Channels to Mechanical Stress Biophysical Journal. 100: 104a. DOI: 10.1016/J.Bpj.2010.12.774 |
0.7 |
|
2011 |
Pavia KE, Spinella SA, Chen KJ, Elmore DE. The Importance of the Proline Hinge in the Action of Histone-Derived Antimicrobial Peptides Biophysical Journal. 100: 496a. DOI: 10.1016/J.Bpj.2010.12.2908 |
0.411 |
|
2011 |
Spinella SA, Chun S, Pavia KE, Webb AC, Elmore DE. Characterizing the Antibacterial Mechanism of Three Novel Histone-Derived Antimicrobial Peptides Biophysical Journal. 100: 494a. DOI: 10.1016/J.Bpj.2010.12.2897 |
0.406 |
|
2011 |
Malcolm HR, Heo Y, Elmore DE, Maurer JA. Prediction and Verification of Critical Tension Sensing Residues in the E. coli Mechanosensitive Channel of Small Conductance (EC-MSCS) Biophysical Journal. 100: 279a. DOI: 10.1016/J.Bpj.2010.12.1731 |
0.689 |
|
2010 |
Elmore DE. Bringing ion channel crystal structures into sharper focus with computer modeling: examples from mechanosensitive channels. Future Medicinal Chemistry. 2: 909-13. PMID 21426108 DOI: 10.4155/Fmc.10.28 |
0.454 |
|
2010 |
Caldwell DB, Malcolm HR, Elmore DE, Maurer JA. Identification and experimental verification of a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels. Biochimica Et Biophysica Acta. 1798: 1750-6. PMID 20529663 DOI: 10.1016/J.Bbamem.2010.06.001 |
0.694 |
|
2009 |
Tsao HS, Spinella SA, Lee AT, Elmore DE. Design of novel histone-derived antimicrobial peptides. Peptides. 30: 2168-73. PMID 19770014 DOI: 10.1016/J.Peptides.2009.09.011 |
0.382 |
|
2009 |
Lee AT, Tsao HS, Maharaj NP, Elmore DE. Investigating the Bactericidal Mechanism of Three Novel Histone-Derived Antimicrobial Peptides Biophysical Journal. 96: 456a-457a. DOI: 10.1016/J.Bpj.2008.12.2347 |
0.4 |
|
2009 |
Xie Y, Maharaj NP, Fleming E, Elmore DE. Investigating the Role of Proline in Buforin II Function Biophysical Journal. 96: 456a. DOI: 10.1016/J.Bpj.2008.12.2344 |
0.424 |
|
2009 |
Malcolm HR, Hawkins JF, Guayasamin RC, Elmore D, Maurer JA. Gating Of Bacterial Cyclic Nucleotide Gated (bCNG) Channels In Response To Membrane Tension Biophysical Journal. 96: 256a. DOI: 10.1016/J.Bpj.2008.12.1266 |
0.705 |
|
2008 |
Bruce LA, Sigman JA, Randall D, Rodriguez S, Song MM, Dai Y, Elmore DE, Pabon A, Glucksman MJ, Wolfson AJ. Hydrogen bond residue positioning in the 599-611 loop of thimet oligopeptidase is required for substrate selection. The Febs Journal. 275: 5607-17. PMID 18959747 DOI: 10.1111/J.1742-4658.2008.06685.X |
0.337 |
|
2008 |
Fleming E, Maharaj NP, Chen JL, Nelson RB, Elmore DE. Effect of lipid composition on buforin II structure and membrane entry. Proteins. 73: 480-91. PMID 18452210 DOI: 10.1002/Prot.22074 |
0.421 |
|
2008 |
Uyterhoeven ET, Butler CH, Ko D, Elmore DE. Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II. Febs Letters. 582: 1715-8. PMID 18448075 DOI: 10.1016/J.Febslet.2008.04.036 |
0.363 |
|
2008 |
Maurer JA, Elmore DE, Clayton D, Xiong L, Lester HA, Dougherty DA. Confirming the revised C-terminal domain of the MscL crystal structure. Biophysical Journal. 94: 4662-7. PMID 18326638 DOI: 10.1529/Biophysj.107.127365 |
0.675 |
|
2006 |
Spronk SA, Elmore DE, Dougherty DA. Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance. Biophysical Journal. 90: 3555-69. PMID 16500980 DOI: 10.1529/Biophysj.105.080432 |
0.755 |
|
2006 |
Elmore DE. Molecular dynamics simulation of a phosphatidylglycerol membrane. Febs Letters. 580: 144-8. PMID 16359668 DOI: 10.1016/J.Febslet.2005.11.064 |
0.337 |
|
2003 |
Elmore DE, Dougherty DA. Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophysical Journal. 85: 1512-24. PMID 12944269 DOI: 10.1016/S0006-3495(03)74584-6 |
0.572 |
|
2001 |
Elmore DE, Dougherty DA. Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophysical Journal. 81: 1345-59. PMID 11509350 DOI: 10.1016/S0006-3495(01)75791-8 |
0.633 |
|
2000 |
Elmore DE, Dougherty DA. A computational study of nicotine conformations in the gas phase and in water. The Journal of Organic Chemistry. 65: 742-7. PMID 10814006 DOI: 10.1021/Jo991383Q |
0.451 |
|
2000 |
Maurer JA, Elmore DE, Lester HA, Dougherty DA. Comparing and contrasting Escherichia coli and Mycobacterium tuberculosis mechanosensitive channels (MscL). New gain of function mutations in the loop region. The Journal of Biological Chemistry. 275: 22238-44. PMID 10801868 DOI: 10.1074/Jbc.M003056200 |
0.678 |
|
Show low-probability matches. |