Year |
Citation |
Score |
2017 |
Bag S, Deneault JR, Durstock MF. Aerosol-Jet-Assisted Thin-Film Growth of CH3
NH3
PbI3
Perovskites-A Means to Achieve High Quality, Defect-Free Films for Efficient Solar Cells Advanced Energy Materials. 7: 1701151. DOI: 10.1002/Aenm.201701151 |
0.37 |
|
2016 |
Bag S, Durstock MF. Large Perovskite Grain Growth in Low Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition. Acs Applied Materials & Interfaces. PMID 26862869 DOI: 10.1021/Acsami.5B11494 |
0.351 |
|
2016 |
Bag S, Durstock MF. Efficient semi-transparent planar perovskite solar cells using a ‘molecular glue’ Nano Energy. 30: 542-548. DOI: 10.1016/J.Nanoen.2016.10.044 |
0.394 |
|
2015 |
Bag S, Patel RJ, Bunha A, Grand C, Berrigan JD, Dalton MJ, Leever BJ, Reynolds JR, Durstock MF. Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer. Acs Applied Materials & Interfaces. PMID 26699653 DOI: 10.1021/Acsami.5B10170 |
0.366 |
|
2013 |
Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB. Beyond 11% effi ciency: Characteristics of state-of-the-art Cu 2ZnSn(S,Se)4Solar Cells Advanced Energy Materials. 3: 34-38. DOI: 10.1002/Aenm.201200348 |
0.64 |
|
2012 |
Gunawan O, Gokmen T, Warren CW, Cohen JD, Todorov TK, Barkhouse DAR, Bag S, Tang J, Shin B, Mitzi DB. Electronic properties of the Cu 2ZnSn(Se,S) 4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods Applied Physics Letters. 100. DOI: 10.1063/1.4729751 |
0.668 |
|
2012 |
Bag S, Gunawan O, Gokmen T, Zhu Y, Todorov TK, Mitzi DB. Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency Energy and Environmental Science. 5: 7060-7065. DOI: 10.1039/C2Ee00056C |
0.661 |
|
2012 |
Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB. Hydrazine-processed Ge-substituted CZTSe solar cells Chemistry of Materials. 24: 4588-4593. DOI: 10.1021/Cm302881G |
0.662 |
|
2011 |
Yuhas BD, Smeigh AL, Samuel AP, Shim Y, Bag S, Douvalis AP, Wasielewski MR, Kanatzidis MG. Biomimetic multifunctional porous chalcogels as solar fuel catalysts. Journal of the American Chemical Society. 133: 7252-5. PMID 21410264 DOI: 10.1021/Ja111275T |
0.582 |
|
2011 |
Oh Y, Bag S, Malliakas CD, Kanatzidis MG. Selective surfaces: High-surface-area zinc tin sulfide chalcogels Chemistry of Materials. 23: 2447-2456. DOI: 10.1021/Cm2003462 |
0.647 |
|
2011 |
Mitzi DB, Todorov TK, Gunawan O, Barkhouse AR, Bag S, Qiu X, Reuter KB, Chey SJ, De Monsabert TG, Haight R, Thiruvengadam S, Kellock AJ, Kuwahara M, Misumi K, Miyamoto H. Slurry-based processing of high-performance CZTSSe photovoltaic absorber layers Acs National Meeting Book of Abstracts. |
0.465 |
|
2010 |
Bag S, Kanatzidis MG. Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation. Journal of the American Chemical Society. 132: 14951-9. PMID 20925321 DOI: 10.1021/Ja1059284 |
0.483 |
|
2009 |
Bag S, Gaudette AF, Bussell ME, Kanatzidis MG. Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. Nature Chemistry. 1: 217-24. PMID 21378851 DOI: 10.1038/Nchem.208 |
0.451 |
|
2008 |
Bag S, Kanatzidis MG. Importance of solution equilibria in the directed assembly of metal chalcogenide mesostructures. Journal of the American Chemical Society. 130: 8366-76. PMID 18529061 DOI: 10.1021/Ja800741H |
0.464 |
|
2008 |
Bag S, Arachchige IU, Kanatzidis MG. Aerogels from metal chalcogenides and their emerging unique properties Journal of Materials Chemistry. 18: 3628-3632. DOI: 10.1039/B804011G |
0.405 |
|
2007 |
Bag S, Trikalitis PN, Chupas PJ, Armatas GS, Kanatzidis MG. Porous semiconducting gels and aerogels from chalcogenide clusters. Science (New York, N.Y.). 317: 490-3. PMID 17656718 DOI: 10.1126/Science.1142535 |
0.457 |
|
Show low-probability matches. |