Year |
Citation |
Score |
2016 |
Mauger F, Abanador PM, Lopata K, Schafer KJ, Gaarde MB. Semiclassical-wave-function perspective on high-harmonic generation Physical Review a - Atomic, Molecular, and Optical Physics. 93. DOI: 10.1103/PhysRevA.93.043815 |
0.8 |
|
2015 |
Fernando RG, Balhoff MC, Lopata K. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory. Journal of Chemical Theory and Computation. 11: 646-54. PMID 26579600 DOI: 10.1021/ct500943m |
0.8 |
|
2015 |
Tussupbayev S, Govind N, Lopata K, Cramer CJ. Comparison of real-time and linear-response time-dependent density functional theories for molecular chromophores ranging from sparse to high densities of states Journal of Chemical Theory and Computation. 11: 1102-1109. DOI: 10.1021/ct500763y |
0.8 |
|
2013 |
Chamberlin SE, Wang Y, Lopata K, Kaspar TC, Cohn AW, Gamelin DR, Govind N, Sushko PV, Chambers SA. Optical absorption and spectral photoconductivity in α-(Fe₁-xCrx)₂O₃ solid-solution thin films. Journal of Physics. Condensed Matter : An Institute of Physics Journal. 25: 392002. PMID 24002907 DOI: 10.1088/0953-8984/25/39/392002 |
0.8 |
|
2013 |
Wang Y, Lopata K, Chambers SA, Govind N, Sushko PV. Optical absorption and band gap reduction in (Fe1- XCr x)2O3 solid solutions: A first-principles study Journal of Physical Chemistry C. 117: 25504-25512. DOI: 10.1021/jp407496w |
0.8 |
|
2013 |
Lopata K, Govind N. Near and above ionization electronic excitations with non-hermitian real-time time-dependent density functional theory Journal of Chemical Theory and Computation. 9: 4939-4946. DOI: 10.1021/ct400569s |
0.8 |
|
2012 |
Lopata K, Van Kuiken BE, Khalil M, Govind N. Linear-Response and Real-Time Time-Dependent Density Functional Theory Studies of Core-Level Near-Edge X-Ray Absorption. Journal of Chemical Theory and Computation. 8: 3284-3292. PMID 26605735 DOI: 10.1021/ct3005613 |
0.8 |
|
2012 |
Reslan R, Lopata K, Arntsen C, Govind N, Neuhauser D. Electron transfer beyond the static picture: a TDDFT∕TD-ZINDO study of a pentacene dimer. The Journal of Chemical Physics. 137: 22A502. PMID 23249039 DOI: 10.1063/1.4729047 |
0.8 |
|
2012 |
Hou GL, Wen H, Lopata K, Zheng WJ, Kowalski K, Govind N, Wang XB, Xantheas SS. A combined gas-phase photoelectron spectroscopic and theoretical study of Zeise's anion and its bromine and iodine analogues. Angewandte Chemie (International Ed. in English). 51: 6356-60. PMID 22565588 DOI: 10.1002/anie.201201959 |
0.8 |
|
2011 |
Lopata K, Reslan R, Kowalska M, Neuhauser D, Govind N, Kowalski K. Excited-State Studies of Polyacenes: A Comparative Picture Using EOMCCSD, CR-EOMCCSD(T), Range-Separated (LR/RT)-TDDFT, TD-PM3, and TD-ZINDO. Journal of Chemical Theory and Computation. 7: 3686-93. PMID 26598263 DOI: 10.1021/ct2005165 |
0.8 |
|
2011 |
Coomar A, Arntsen C, Lopata KA, Pistinner S, Neuhauser D. Near-field: a finite-difference time-dependent method for simulation of electrodynamics on small scales. The Journal of Chemical Physics. 135: 084121. PMID 21895173 DOI: 10.1063/1.3626549 |
0.8 |
|
2011 |
Arntsen C, Lopata K, Wall MR, Bartell L, Neuhauser D. Modeling molecular effects on plasmon transport: silver nanoparticles with tartrazine. The Journal of Chemical Physics. 134: 084101. PMID 21361521 DOI: 10.1063/1.3541820 |
0.8 |
|
2011 |
Govind N, Lopata K, Rousseau R, Andersen A, Kowalski K. Visible light absorption of N-doped TiO2 rutile using (LR/RT)-TDDFT and active space EOMCCSD calculations Journal of Physical Chemistry Letters. 2: 2696-2701. DOI: 10.1021/jz201118r |
0.8 |
|
2011 |
Lopata K, Govind N. Modeling fast electron dynamics with real-time time-dependent density functional theory: Application to small molecules and chromophores Journal of Chemical Theory and Computation. 7: 1344-1355. DOI: 10.1021/ct200137z |
0.8 |
|
2010 |
Lopata K, Thorpe R, Pistinner S, Duan X, Neuhauser D. Graphene nanomeshes: Onset of conduction band gaps Chemical Physics Letters. 498: 334-337. DOI: 10.1016/j.cplett.2010.08.086 |
0.8 |
|
2009 |
Lopata K, Neuhauser D. Nonlinear nanopolaritonics: finite-difference time-domain Maxwell-Schrödinger simulation of molecule-assisted plasmon transfer. The Journal of Chemical Physics. 131: 014701. PMID 19586111 DOI: 10.1063/1.3167407 |
0.8 |
|
2009 |
Lopata K, Neuhauser D. Multiscale Maxwell-Schrodinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics. The Journal of Chemical Physics. 130: 104707. PMID 19292549 DOI: 10.1063/1.3082245 |
0.8 |
|
2008 |
Neuhauser D, Lopata K. Quantum Drude friction for time-dependent density functional theory. The Journal of Chemical Physics. 129: 134106. PMID 19045077 DOI: 10.1063/1.2985650 |
0.8 |
|
2007 |
Neuhauser D, Lopata K. Molecular nanopolaritonics: cross manipulation of near-field plasmons and molecules. I. Theory and application to junction control. The Journal of Chemical Physics. 127: 154715. PMID 17949199 DOI: 10.1063/1.2790436 |
0.8 |
|
2007 |
Lopata K, Neuhauser D, Baer R. Curve crossing and negative refraction in simulations of near-field coupled metallic nanoparticle arrays. The Journal of Chemical Physics. 127: 154714. PMID 17949198 DOI: 10.1063/1.2796162 |
0.8 |
|
2007 |
Baer R, Lopata K, Neuhauser D. Properties of phase-coherent energy shuttling on the nanoscale. The Journal of Chemical Physics. 126: 014705. PMID 17212509 DOI: 10.1063/1.2390697 |
0.8 |
|
2005 |
Zabet-Khosousi A, Suganuma Y, Lopata K, Trudeau PE, Dhirani AA, Statt B. Influence of linker molecules on charge transport through self-assembled single-nanoparticle devices Physical Review Letters. 94. DOI: 10.1103/PhysRevLett.94.096801 |
0.8 |
|
Show low-probability matches. |