Victor L. Davidson - Publications

Affiliations: 
The University of Mississippi Medical Center, Jackson, MS, United States 
Area:
Biochemistry

191 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Mamounis KJ, Yukl ET, Davidson VL. Roles of active site residues in catalysis, substrate binding, cooperativity and the reaction mechanism of the quinoprotein glycine oxidase. The Journal of Biological Chemistry. PMID 32234764 DOI: 10.1074/Jbc.Ra120.013198  0.48
2020 Ma Z, Abendroth J, Buchko GW, Rohde KH, Davidson VL. Crystal structure of a hemerythrin-like protein from Mycobacterium kansasii and homology model of the orthologous Rv2633c protein of M. tuberculosis. The Biochemical Journal. PMID 31913442 DOI: 10.1042/Bcj20190827  0.372
2019 Mamounis KJ, Avalos D, Yukl ET, Davidson VL. Kinetic and structural evidence that Asp-678 plays multiple roles in catalysis by the quinoprotein glycine oxidase. The Journal of Biological Chemistry. PMID 31615898 DOI: 10.1074/Jbc.Ra119.011255  0.49
2019 Mamounis KJ, Ma Z, Sanchez-Amat A, Davidson VL. Characterization of PlGoxB, a flavoprotein required for cysteine tryptophylquinone biosynthesis in glycine oxidase from Pseudoalteromonas luteoviolacea. Archives of Biochemistry and Biophysics. 108110. PMID 31541619 DOI: 10.1016/J.Abb.2019.108110  0.432
2019 Ma Z, Davidson VL. Redox properties of a cysteine tryptophylquinone-dependent glycine oxidase are distinct from those of tryptophylquinone-dependent dehydrogenases. Biochemistry. PMID 30945853 DOI: 10.1021/Acs.Biochem.9B00104  0.403
2019 Avalos D, Sabuncu S, Mamounis KJ, Davidson VL, Moënne-Loccoz P, Yukl ET. Structural and spectroscopic characterization of a product Schiff-base intermediate in the reaction of the quinoprotein glycine oxidase, GoxA. Biochemistry. PMID 30605596 DOI: 10.1021/Acs.Biochem.8B01145  0.443
2018 Yukl ET, Davidson VL. Diversity of structures, catalytic mechanisms and processes of cofactor biosynthesis of tryptophylquinone-bearing enzymes. Archives of Biochemistry and Biophysics. 654: 40-46. PMID 30026025 DOI: 10.1016/J.Abb.2018.07.012  0.404
2018 Davidson VL. Protein-derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions. Biochemistry. PMID 29498828 DOI: 10.1021/Acs.Biochem.8B00123  0.462
2018 Andreo-Vidal A, Mamounis K, Sehanobish E, Avalos D, Campillo-Brocal JC, Sanchez-Amat A, Yukl ET, Davidson VL. Structure and enzymatic properties of an unusual cysteine tryptophylquinone-dependent glycine oxidase from Pseudoalteromonas luteoviolacea. Biochemistry. PMID 29381339 DOI: 10.1021/Acs.Biochem.8B00009  0.435
2017 Ma Z, Strickland KT, Cherne MD, Sehanobish E, Rohde KH, Self WT, Davidson VL. The Rv2633c protein of Mycobacterium tuberculosis is a non-heme di-iron catalase with a possible role in defenses against oxidative stress. The Journal of Biological Chemistry. PMID 29242190 DOI: 10.1074/Jbc.Ra117.000421  0.356
2017 Ma Z, Davidson VL. Ascorbate Protects the Di-Heme Enzyme, MauG, Against Self-Inflicted Oxidative Damage by an Unusual Antioxidant Mechanism. The Biochemical Journal. PMID 28634178 DOI: 10.1042/Bcj20170349  0.49
2017 Feng M, Ma Z, Crudup BF, Davidson VL. Properties of the high-spin heme of MauG are altered by binding of preMADH at the protein surface 40 Å away. Febs Letters. PMID 28485817 DOI: 10.1002/1873-3468.12666  0.43
2017 Williamson HR, Sehanobish E, Shiller AM, Sanchez-Amat A, Davidson VL. Roles of copper and a conserved aspartic acid in the autocatalytic hydroxylation of a specific tryptophan residue during cysteine tryptophylquinone biogenesis. Biochemistry. PMID 28140566 DOI: 10.1021/Acs.Biochem.6B01137  0.739
2017 Sehanobish E, Dow BA, Davidson VL. Analytical Methods for Assessing the Effects of Site-Directed Mutagenesis on Protein-Cofactor and Protein-Protein Functional Relationships. Methods in Molecular Biology (Clifton, N.J.). 1498: 421-438. PMID 27709593 DOI: 10.1007/978-1-4939-6472-7_29  0.396
2017 Dow BA, Sehanobish E, Davidson VL. In Silico Approaches to Identify Mutagenesis Targets to Probe and Alter Protein-Cofactor and Protein-Protein Functional Relationships. Methods in Molecular Biology (Clifton, N.J.). 1498: 181-190. PMID 27709576 DOI: 10.1007/978-1-4939-6472-7_12  0.351
2016 Sehanobish E, Williamson HR, Davidson VL. Roles of conserved residues of GoxA in controlling glycine oxidase activity, cooperativity, subunit composition and cysteine tryptophylquinone biosynthesis. The Journal of Biological Chemistry. PMID 27637328 DOI: 10.1074/Jbc.M116.741835  0.742
2016 Ma Z, Williamson HR, Davidson VL. A suicide mutation affecting proton transfers to high-valent hemes causes inactivation of MauG during catalysis. Biochemistry. PMID 27622473 DOI: 10.1021/Acs.Biochem.6B00816  0.747
2016 Ma Z, Williamson HR, Davidson VL. Mechanism of protein oxidative damage that is coupled to long-range electron transfer to high-valent hemes. The Biochemical Journal. PMID 27076451 DOI: 10.1042/Bcj20160047  0.755
2016 Sehanobish E, Camprillo-Brocal JC, Williamson HR, Sanchez-Amat A, Davidson VL. Interaction of GoxA with its modifying enzyme and its subunit assembly are dependent on the extent of cysteine tryptophylquinone biosynthesis. Biochemistry. PMID 27064961 DOI: 10.1021/Acs.Biochem.6B00274  0.723
2016 Dow BA, Davidson VL. Converting the bis-FeIV state of the diheme enzyme MauG to Compound I decreases the reorganization energy for electron transfer. The Biochemical Journal. 473: 67-72. PMID 26494530 DOI: 10.1042/Bj20150998  0.437
2015 Ma Z, Williamson HR, Davidson VL. Roles of multiple-proton transfer pathways and proton-coupled electron transfer in the reactivity of the bis-FeIV state of MauG. Proceedings of the National Academy of Sciences of the United States of America. 112: 10896-901. PMID 26283395 DOI: 10.1073/Pnas.1510986112  0.724
2015 Dow BA, Davidson VL. Characterization of the free energy dependence of an interprotein electron transfer reaction by variation of pH and site-directed mutagenesis. Biochimica Et Biophysica Acta. 1847: 1181-6. PMID 26087387 DOI: 10.1016/J.Bbabio.2015.06.012  0.421
2015 Sehanobish E, Chacón-Verdú MD, Sanchez-Amat A, Davidson VL. Roles of active site residues in LodA, a cysteine tryptophylquinone dependent ε-lysine oxidase. Archives of Biochemistry and Biophysics. 579: 26-32. PMID 26048732 DOI: 10.1016/J.Abb.2015.05.013  0.406
2015 Shin S, Feng M, Li C, Williamson HR, Choi M, Wilmot CM, Davidson VL. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent Fe(II)/Fe(III) state and enhances charge resonance stabilization of the bis-Fe(IV) state. Biochimica Et Biophysica Acta. 1847: 709-16. PMID 25896561 DOI: 10.1016/J.Bbabio.2015.04.008  0.787
2015 Dow BA, Tatulian SA, Davidson VL. Use of the amicyanin signal sequence for efficient periplasmic expression in E. coli of a human antibody light chain variable domain. Protein Expression and Purification. 108: 9-12. PMID 25573388 DOI: 10.1016/J.Pep.2014.12.017  0.323
2015 Chacón-Verdú MD, Campillo-Brocal JC, Lucas-Elío P, Davidson VL, Sánchez-Amat A. Characterization of recombinant biosynthetic precursors of the cysteine tryptophylquinone cofactors of l-lysine-epsilon-oxidase and glycine oxidase from Marinomonas mediterranea. Biochimica Et Biophysica Acta. 1854: 1123-31. PMID 25542375 DOI: 10.1016/J.Bbapap.2014.12.018  0.461
2014 Williamson HR, Dow BA, Davidson VL. Mechanisms for control of biological electron transfer reactions. Bioorganic Chemistry. 57: 213-21. PMID 25085775 DOI: 10.1016/J.Bioorg.2014.06.006  0.723
2014 Shin S, Choi M, Williamson HR, Davidson VL. A simple method to engineer a protein-derived redox cofactor for catalysis. Biochimica Et Biophysica Acta. 1837: 1595-601. PMID 24858537 DOI: 10.1016/J.Bbabio.2014.05.354  0.789
2014 Dow BA, Sukumar N, Matos JO, Choi M, Schulte A, Tatulian SA, Davidson VL. The sole tryptophan of amicyanin enhances its thermal stability but does not influence the electronic properties of the type 1 copper site. Archives of Biochemistry and Biophysics. 550: 20-7. PMID 24704124 DOI: 10.1016/J.Abb.2014.03.010  0.635
2014 Shin S, Yukl ET, Sehanobish E, Wilmot CM, Davidson VL. Site-directed mutagenesis of Gln103 reveals the influence of this residue on the redox properties and stability of MauG. Biochemistry. 53: 1342-9. PMID 24517455 DOI: 10.1021/Bi5000349  0.689
2014 Sehanobish E, Shin S, Sanchez-Amat A, Davidson VL. Steady-state kinetic mechanism of LodA, a novel cysteine tryptophylquinone-dependent oxidase. Febs Letters. 588: 752-6. PMID 24462691 DOI: 10.1016/J.Febslet.2014.01.021  0.663
2014 Shin S, Davidson VL. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis. Archives of Biochemistry and Biophysics. 544: 112-8. PMID 24144526 DOI: 10.1016/J.Abb.2013.10.004  0.718
2014 Wilmot C, Yukl E, Jensen L, Davidson V. MauG catalysis: a tale of ferryl iron, radicals and long distance hopping Acta Crystallographica Section a Foundations and Advances. 70: C312-C312. DOI: 10.1107/S2053273314096879  0.45
2013 Yukl ET, Williamson HR, Higgins L, Davidson VL, Wilmot CM. Oxidative damage in MauG: implications for the control of high-valent iron species and radical propagation pathways. Biochemistry. 52: 9447-55. PMID 24320950 DOI: 10.1021/Bi401441H  0.754
2013 Shin S, Feng M, Davidson VL. Mutation of Trp(93) of MauG to tyrosine causes loss of bound Ca(2+) and alters the kinetic mechanism of tryptophan tryptophylquinone cofactor biosynthesis. The Biochemical Journal. 456: 129-37. PMID 24024544 DOI: 10.1042/Bj20130981  0.657
2013 Abu Tarboush N, Yukl ET, Shin S, Feng M, Wilmot CM, Davidson VL. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG. Biochemistry. 52: 6358-67. PMID 23952537 DOI: 10.1021/Bi400905S  0.656
2013 Yukl ET, Jensen LM, Davidson VL, Wilmot CM. Structures of MauG in complex with quinol and quinone MADH. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications. 69: 738-43. PMID 23832199 DOI: 10.1107/S1744309113016539  0.311
2013 Davidson VL, Wilmot CM. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Annual Review of Biochemistry. 82: 531-50. PMID 23746262 DOI: 10.1146/Annurev-Biochem-051110-133601  0.505
2013 Geng J, Dornevil K, Davidson VL, Liu A. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG. Proceedings of the National Academy of Sciences of the United States of America. 110: 9639-44. PMID 23720312 DOI: 10.1073/Pnas.1301544110  0.405
2013 Abu Tarboush N, Jensen LM, Wilmot CM, Davidson VL. A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis. Febs Letters. 587: 1736-41. PMID 23669364 DOI: 10.1016/J.Febslet.2013.04.047  0.452
2013 Yukl ET, Liu F, Krzystek J, Shin S, Jensen LM, Davidson VL, Wilmot CM, Liu A. Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 110: 4569-73. PMID 23487750 DOI: 10.1073/Pnas.1215011110  0.698
2012 Abu Tarboush N, Shin S, Geng J, Liu A, Davidson VL. Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity. Febs Letters. 586: 4339-43. PMID 23127557 DOI: 10.1016/J.Febslet.2012.10.044  0.646
2012 Jensen LM, Meharenna YT, Davidson VL, Poulos TL, Hedman B, Wilmot CM, Sarangi R. Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 17: 1241-55. PMID 23053529 DOI: 10.1007/S00775-012-0939-3  0.363
2012 Choi M, Shin S, Davidson VL. Characterization of electron tunneling and hole hopping reactions between different forms of MauG and methylamine dehydrogenase within a natural protein complex. Biochemistry. 51: 6942-9. PMID 22897160 DOI: 10.1021/Bi300817D  0.763
2012 Chen Y, Naik SG, Krzystek J, Shin S, Nelson WH, Xue S, Yang JJ, Davidson VL, Liu A. Role of calcium in metalloenzymes: effects of calcium removal on the axial ligation geometry and magnetic properties of the catalytic diheme center in MauG. Biochemistry. 51: 1586-97. PMID 22320333 DOI: 10.1021/Bi201575F  0.62
2012 Davidson VL, Liu A. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification. Biochimica Et Biophysica Acta. 1824: 1299-305. PMID 22314272 DOI: 10.1016/J.Bbapap.2012.01.008  0.517
2012 Feng M, Jensen LM, Yukl ET, Wei X, Liu A, Wilmot CM, Davidson VL. Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG. Biochemistry. 51: 1598-606. PMID 22299652 DOI: 10.1021/Bi201882E  0.467
2011 Sukumar N, Choi M, Davidson VL. Replacement of the axial copper ligand methionine with lysine in amicyanin converts it to a zinc-binding protein that no longer binds copper. Journal of Inorganic Biochemistry. 105: 1638-44. PMID 22071089 DOI: 10.1016/J.Jinorgbio.2011.08.002  0.63
2011 Tarboush NA, Jensen LM, Yukl ET, Geng J, Liu A, Wilmot CM, Davidson VL. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 108: 16956-61. PMID 21969534 DOI: 10.1073/Pnas.1109423108  0.457
2011 Davidson VL. Ion-protein coordination: the many faces of a proton. Nature Chemistry. 3: 662-3. PMID 21860447 DOI: 10.1038/Nchem.1122  0.33
2011 Yukl ET, Goblirsch BR, Davidson VL, Wilmot CM. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation. Biochemistry. 50: 2931-8. PMID 21355604 DOI: 10.1021/Bi200023N  0.42
2011 Choi M, Sukumar N, Mathews FS, Liu A, Davidson VL. Proline 96 of the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues at the protein-protein interface. Biochemistry. 50: 1265-73. PMID 21268585 DOI: 10.1021/Bi101794Y  0.682
2011 Choi M, Davidson VL. Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes. Metallomics : Integrated Biometal Science. 3: 140-51. PMID 21258692 DOI: 10.1039/C0Mt00061B  0.634
2011 Shin S, Feng M, Chen Y, Jensen LM, Tachikawa H, Wilmot CM, Liu A, Davidson VL. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis. Biochemistry. 50: 144-50. PMID 21128656 DOI: 10.1021/Bi101819M  0.617
2011 Davidson VL. Generation of protein-derived redox cofactors by posttranslational modification. Molecular Biosystems. 7: 29-37. PMID 20936199 DOI: 10.1039/C005311B  0.439
2011 Jensen L, Sanishvili R, Tarboush NA, Davidson V, Wilmot C. Protein complex structures inform about the reactivity of the hemoprotein MauG Acta Crystallographica Section a Foundations of Crystallography. 67: C218-C218. DOI: 10.1107/S0108767311094591  0.31
2010 Abu Tarboush N, Jensen LM, Feng M, Tachikawa H, Wilmot CM, Davidson VL. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine . Biochemistry. 49: 9783-91. PMID 20929212 DOI: 10.1021/Bi101254P  0.444
2010 Shin S, Abu Tarboush N, Davidson VL. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase. Biochemistry. 49: 5810-6. PMID 20540536 DOI: 10.1021/Bi1004969  0.696
2010 Sukumar N, Mathews FS, Langan P, Davidson VL. A joint x-ray and neutron study on amicyanin reveals the role of protein dynamics in electron transfer Proceedings of the National Academy of Sciences of the United States of America. 107: 6817-6822. PMID 20351252 DOI: 10.1073/Pnas.0912672107  0.395
2010 Jensen LM, Sanishvili R, Davidson VL, Wilmot CM. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science (New York, N.Y.). 327: 1392-4. PMID 20223990 DOI: 10.1126/Science.1182492  0.458
2009 Fu R, Liu F, Davidson VL, Liu A. Heme iron nitrosyl complex of MauG reveals an efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands. Biochemistry. 48: 11603-5. PMID 19911786 DOI: 10.1021/Bi9017544  0.429
2009 Shin S, Lee S, Davidson VL. Suicide inactivation of MauG during reaction with O(2) or H(2)O(2) in the absence of its natural protein substrate. Biochemistry. 48: 10106-12. PMID 19788236 DOI: 10.1021/Bi901284E  0.639
2009 Choi M, Sukumar N, Liu A, Davidson VL. Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of methionine with leucine. Biochemistry. 48: 9174-84. PMID 19715303 DOI: 10.1021/Bi900836H  0.661
2009 Wilmot CM, Davidson VL. Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Current Opinion in Chemical Biology. 13: 469-74. PMID 19648051 DOI: 10.1016/J.Cbpa.2009.06.026  0.45
2009 Lee S, Shin S, Li X, Davidson VL. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis. Biochemistry. 48: 2442-7. PMID 19196017 DOI: 10.1021/Bi802166C  0.748
2008 Li X, Fu R, Lee S, Krebs C, Davidson VL, Liu A. A catalytic di-heme bis-Fe(IV) intermediate, alternative to an Fe(IV)=O porphyrin radical. Proceedings of the National Academy of Sciences of the United States of America. 105: 8597-600. PMID 18562294 DOI: 10.1073/Pnas.0801643105  0.593
2008 Davidson VL. Protein control of true, gated, and coupled electron transfer reactions. Accounts of Chemical Research. 41: 730-8. PMID 18442271 DOI: 10.1021/Ar700252C  0.431
2008 Li X, Fu R, Liu A, Davidson VL. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone. Biochemistry. 47: 2908-12. PMID 18220357 DOI: 10.1021/Bi702259W  0.636
2008 Ma JK, Lee S, Choi M, Bishop GR, Hosler JP, Davidson VL. The axial ligand and extent of protein folding determine whether Zn or Cu binds to amicyanin. Journal of Inorganic Biochemistry. 102: 342-6. PMID 17986390 DOI: 10.1016/J.Jinorgbio.2007.09.007  0.605
2007 Ma JK, Wang Y, Carrell CJ, Mathews FS, Davidson VL. A single methionine residue dictates the kinetic mechanism of interprotein electron transfer from methylamine dehydrogenase to amicyanin. Biochemistry. 46: 11137-46. PMID 17824674 DOI: 10.1021/Bi7012307  0.601
2007 Li T, Ma JK, Hosler JP, Davidson VL, Liu A. Detection of transient intermediates in the metal-dependent nonoxidative decarboxylation catalyzed by alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase. Journal of the American Chemical Society. 129: 9278-9. PMID 17625866 DOI: 10.1021/Ja073648L  0.378
2007 Ma JK, Mathews FS, Davidson VL. Correlation of rhombic distortion of the type 1 copper site of M98Q amicyanin with increased electron transfer reorganization energy. Biochemistry. 46: 8561-8. PMID 17602663 DOI: 10.1021/Bi700303E  0.427
2007 Davidson VL. Protein-derived cofactors. Expanding the scope of post-translational modifications. Biochemistry. 46: 5283-92. PMID 17439161 DOI: 10.1021/Bi700468T  0.404
2007 Carrell CJ, Ma JK, Antholine WE, Hosler JP, Mathews FS, Davidson VL. Generation of novel copper sites by mutation of the axial ligand of amicyanin. Atomic resolution structures and spectroscopic properties. Biochemistry. 46: 1900-12. PMID 17295442 DOI: 10.1021/Bi0619674  0.392
2007 Pearson AR, Pahl R, Kovaleva EG, Davidson VL, Wilmot CM. Tracking X-ray-derived redox changes in crystals of a methylamine dehydrogenase/amicyanin complex using single-crystal UV/Vis microspectrophotometry. Journal of Synchrotron Radiation. 14: 92-8. PMID 17211075 DOI: 10.1107/S0909049506051259  0.311
2006 Sukumar N, Chen ZW, Ferrari D, Merli A, Rossi GL, Bellamy HD, Chistoserdov A, Davidson VL, Mathews FS. Crystal structure of an electron transfer complex between aromatic amine dehydrogenase and azurin from Alcaligenes faecalis. Biochemistry. 45: 13500-10. PMID 17087503 DOI: 10.1021/Bi0612972  0.405
2006 Li X, Jones LH, Pearson AR, Wilmot CM, Davidson VL. Mechanistic possibilities in MauG-dependent tryptophan tryptophylquinone biosynthesis. Biochemistry. 45: 13276-83. PMID 17073448 DOI: 10.1021/Bi061497D  0.623
2006 Pearson AR, Marimanikkuppam S, Li X, Davidson VL, Wilmot CM. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase. Journal of the American Chemical Society. 128: 12416-7. PMID 16984182 DOI: 10.1021/Ja064466E  0.535
2006 Ma JK, Carrell CJ, Mathews FS, Davidson VL. Site-directed mutagenesis of proline 52 to glycine in amicyanin converts a true electron transfer reaction into one that is conformationally gated. Biochemistry. 45: 8284-93. PMID 16819827 DOI: 10.1021/Bi0605134  0.466
2006 Ono K, Okajima T, Tani M, Kuroda S, Sun D, Davidson VL, Tanizawa K. Involvement of a putative [Fe-S]-cluster-binding protein in the biogenesis of quinohemoprotein amine dehydrogenase. The Journal of Biological Chemistry. 281: 13672-84. PMID 16546999 DOI: 10.1074/Jbc.M600029200  0.566
2006 Li X, Feng M, Wang Y, Tachikawa H, Davidson VL. Evidence for redox cooperativity between c-type hemes of MauG which is likely coupled to oxygen activation during tryptophan tryptophylquinone biosynthesis. Biochemistry. 45: 821-8. PMID 16411758 DOI: 10.1021/Bi052000N  0.664
2005 Ma JK, Bishop GR, Davidson VL. The ligand geometry of copper determines the stability of amicyanin. Archives of Biochemistry and Biophysics. 444: 27-33. PMID 16289023 DOI: 10.1016/J.Abb.2005.09.016  0.331
2005 Wang Y, Li X, Jones LH, Pearson AR, Wilmot CM, Davidson VL. MauG-dependent in vitro biosynthesis of tryptophan tryptophylquinone in methylamine dehydrogenase. Journal of the American Chemical Society. 127: 8258-9. PMID 15941239 DOI: 10.1021/Ja051734K  0.701
2005 Davidson VL. Structure and mechanism of tryptophylquinone enzymes. Bioorganic Chemistry. 33: 159-70. PMID 15888309 DOI: 10.1016/J.Bioorg.2004.10.001  0.49
2005 Sun D, Li X, Mathews FS, Davidson VL. Site-directed mutagenesis of proline 94 to alanine in amicyanin converts a true electron transfer reaction into one that is kinetically coupled. Biochemistry. 44: 7200-6. PMID 15882058 DOI: 10.1021/Bi050288A  0.689
2005 Jones LH, Pearson AR, Tang Y, Wilmot CM, Davidson VL. Active site aspartate residues are critical for tryptophan tryptophylquinone biogenesis in methylamine dehydrogenase. The Journal of Biological Chemistry. 280: 17392-6. PMID 15734739 DOI: 10.1074/Jbc.M500943200  0.434
2004 Carrell CJ, Wang X, Jones L, Jarrett WL, Davidson VL, Mathews FS. Crystallographic and NMR investigation of cobalt-substituted amicyanin. Biochemistry. 43: 9381-9. PMID 15260481 DOI: 10.1021/Bi049635R  0.332
2004 Carrell CJ, Sun D, Jiang S, Davidson VL, Mathews FS. Structural studies of two mutants of amicyanin from Paracoccus denitrificans that stabilize the reduced state of the copper. Biochemistry. 43: 9372-80. PMID 15260480 DOI: 10.1021/Bi049634Z  0.557
2004 Davidson VL. Electron transfer in quinoproteins. Archives of Biochemistry and Biophysics. 428: 32-40. PMID 15234267 DOI: 10.1016/J.Abb.2004.03.022  0.473
2004 Pearson AR, De La Mora-Rey T, Graichen ME, Wang Y, Jones LH, Marimanikkupam S, Agger SA, Grimsrud PA, Davidson VL, Wilmot CM. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation. Biochemistry. 43: 5494-502. PMID 15122915 DOI: 10.1021/Bi049863L  0.593
2004 Ferrari D, Di Valentin M, Carbonera D, Merli A, Chen ZW, Mathews FS, Davidson VL, Rossi GL. Electron transfer in crystals of the binary and ternary complexes of methylamine dehydrogenase with amicyanin and cytochrome c551i as detected by EPR spectroscopy. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 9: 231-7. PMID 14735334 DOI: 10.1007/S00775-003-0513-0  0.394
2003 Xia ZX, Dai WW, He YN, White SA, Mathews FS, Davidson VL. X-ray structure of methanol dehydrogenase from Paracoccus denitrificans and molecular modeling of its interactions with cytochrome c-551i. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 8: 843-54. PMID 14505072 DOI: 10.1007/S00775-003-0485-0  0.329
2003 Sun D, Ono K, Okajima T, Tanizawa K, Uchida M, Yamamoto Y, Mathews FS, Davidson VL. Chemical and kinetic reaction mechanisms of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans. Biochemistry. 42: 10896-903. PMID 12974623 DOI: 10.1021/Bi035062R  0.63
2003 Jones LH, Liu A, Davidson VL. An engineered CuA Amicyanin capable of intermolecular electron transfer reactions. The Journal of Biological Chemistry. 278: 47269-74. PMID 12970350 DOI: 10.1074/Jbc.M308863200  0.436
2003 Wang Y, Graichen ME, Liu A, Pearson AR, Wilmot CM, Davidson VL. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis. Biochemistry. 42: 7318-25. PMID 12809487 DOI: 10.1021/Bi034243Q  0.572
2003 Davidson VL. Probing mechanisms of catalysis and electron transfer by methylamine dehydrogenase by site-directed mutagenesis of alpha Phe55. Biochimica Et Biophysica Acta. 1647: 230-3. PMID 12686138 DOI: 10.1016/S1570-9639(03)00056-6  0.342
2003 Pearson AR, Jones LH, Higgins L, Ashcroft AE, Wilmot CM, Davidson VL. Understanding quinone cofactor biogenesis in methylamine dehydrogenase through novel cofactor generation. Biochemistry. 42: 3224-30. PMID 12641453 DOI: 10.1021/Bi027073A  0.357
2003 Davidson VL, Sun D. Evidence for substrate activation of electron transfer from methylamine dehydrogenase to amicyanin. Journal of the American Chemical Society. 125: 3224-5. PMID 12630872 DOI: 10.1021/Ja0297133  0.612
2003 Sun D, Davidson VL. Effects of engineering uphill electron transfer into the methylamine dehydrogenase-amicyanin-cytochrome c-551i complex. Biochemistry. 42: 1772-6. PMID 12578392 DOI: 10.1021/Bi0271594  0.61
2002 Davidson VL. Chemically gated electron transfer. A means of accelerating and regulating rates of biological electron transfer. Biochemistry. 41: 14633-6. PMID 12475211 DOI: 10.1021/Bi026812K  0.39
2002 Sun D, Chen ZW, Mathews FS, Davidson VL. Mutation of alphaPhe55 of methylamine dehydrogenase alters the reorganization energy and electronic coupling for its electron transfer reaction with amicyanin. Biochemistry. 41: 13926-33. PMID 12437349 DOI: 10.1021/Bi026654X  0.583
2002 Sun D, Wang X, Davidson VL. Redox properties of an engineered purple Cu(A) azurin. Archives of Biochemistry and Biophysics. 404: 158-62. PMID 12127080 DOI: 10.1016/S0003-9861(02)00282-5  0.524
2002 Davidson VL, Sun D. Lysozyme-osmotic shock methods for localization of periplasmic redox proteins in bacteria. Methods in Enzymology. 353: 121-30. PMID 12078488 DOI: 10.1016/S0076-6879(02)53042-1  0.465
2002 Sun D, Davidson VL. Inter-subunit cross-linking of methylamine dehydrogenase by cyclopropylamine requires residue alphaPhe55. Febs Letters. 517: 172-4. PMID 12062431 DOI: 10.1016/S0014-5793(02)02615-7  0.542
2002 Bao L, Sun D, Tachikawa H, Davidson VL. Improved sensitivity of a histamine sensor using an engineered methylamine dehydrogenase. Analytical Chemistry. 74: 1144-8. PMID 11924976 DOI: 10.1021/Ac0106086  0.487
2002 Wang Y, Sun D, Davidson VL. Use of indirect site-directed mutagenesis to alter the substrate specificity of methylamine dehydrogenase. The Journal of Biological Chemistry. 277: 4119-22. PMID 11733518 DOI: 10.1074/Jbc.M109270200  0.669
2002 Sun D, Davidson VL. Mechanisms of catalysis and electron transfer by tryptophan tryptophylquinone enzymes Progress in Reaction Kinetics and Mechanism. 27: 209-241. DOI: 10.3184/007967402103165397  0.597
2001 Sun D, Jones LH, Mathews FS, Davidson VL. Active-site residues are critical for the folding and stability of methylamine dehydrogenase. Protein Engineering. 14: 675-81. PMID 11707614 DOI: 10.1093/Protein/14.9.675  0.569
2001 Davidson VL. Pyrroloquinoline quinone (PQQ) from methanol dehydrogenase and tryptophan tryptophylquinone (TTQ) from methylamine dehydrogenase Advances in Protein Chemistry. 58: 95-140. PMID 11665494 DOI: 10.1016/S0065-3233(01)58003-1  0.44
2001 Sun D, Davidson VL. Re-engineering monovalent cation binding sites of methylamine dehydrogenase: effects on spectral properties and gated electron transfer. Biochemistry. 40: 12285-91. PMID 11591147 DOI: 10.1021/Bi011246Z  0.597
2000 Davidson VL. Methylamine dehydrogenase. Structure and function of electron transfer complexes Sub-Cellular Biochemistry. 35: 119-143. PMID 11192720 DOI: 10.1007/0-306-46828-X_4  0.346
2000 Zhu Z, Sun D, Davidson VL. Conversion of methylamine dehydrogenase to a long-chain amine dehydrogenase by mutagenesis of a single residue. Biochemistry. 39: 11184-6. PMID 10985763 DOI: 10.1021/Bi001568N  0.583
2000 Davidson VL. Effects of kinetic coupling on experimentally determined electron transfer parameters Biochemistry. 39: 4924-4928. PMID 10769151 DOI: 10.1021/Bi992671J  0.343
2000 Davidson VL. Structure, function, and applications of tryptophan tryptophylquinone enzymes Advances in Experimental Medicine and Biology. 467: 587-595. PMID 10721104 DOI: 10.1007/978-1-4615-4709-9_73  0.495
2000 Davidson VL, Jones LH, Graichen ME, Zhu Z. Tyr(30) of amicyanin is not critical for electron transfer to cytochrome c-551i: implications for predicting electron transfer pathways. Biochimica Et Biophysica Acta. 1457: 27-35. PMID 10692547 DOI: 10.1016/S0005-2728(00)00052-9  0.4
2000 Davidson VL. What controls the rates of interprotein electron-transfer reactions Accounts of Chemical Research. 33: 87-93. PMID 10673316 DOI: 10.1021/Ar9900616  0.398
2000 Singh V, Zhu Z, Davidson VL, McCracken J. Characterization of the tryptophan tryptophyl-semiquinone catalytic intermediate of methylamine dehydrogenase by electron spin-echo envelope modulation spectroscopy Journal of the American Chemical Society. 122: 931-938. DOI: 10.1021/Ja9934246  0.394
2000 Davidson VL, Zhu Z. Reaction products and intermediates of tryptophan tryptophylquinone enzymes Journal of Molecular Catalysis - B Enzymatic. 8: 69-83. DOI: 10.1016/S1381-1177(99)00069-7  0.483
1999 Zhu Z, Sun D, Davidson VL. Localization of periplasmic redox proteins of Alcaligenes faecalis by a modified general method for fractionating gram-negative bacteria. Journal of Bacteriology. 181: 6540-2. PMID 10515948 DOI: 10.1128/Jb.181.20.6540-6542.1999  0.519
1999 Hyun YL, Zhu Z, Davidson VL. Gated and ungated electron transfer reactions from aromatic amine dehydrogenase to azurin Journal of Biological Chemistry. 274: 29081-29086. PMID 10506161 DOI: 10.1074/Jbc.274.41.29081  0.409
1999 Graichen ME, Jones LH, Sharma BV, van Spanning RJ, Hosler JP, Davidson VL. Heterologous expression of correctly assembled methylamine dehydrogenase in Rhodobacter sphaeroides. Journal of Bacteriology. 181: 4216-22. PMID 10400578 DOI: 10.1128/Jb.181.14.4216-4222.1999  0.308
1999 Zhu Z, Davidson VL. Identification of a new reaction intermediate in the oxidation of methylamine dehydrogenase by amicyanin Biochemistry. 38: 4862-4867. PMID 10200175 DOI: 10.1021/Bi982939R  0.421
1999 Davidson VL. Methylamine dehydrogenase: Structure and function of electron transfer complexes Biochemical Society Transactions. 27: 201-206. PMID 10093734 DOI: 10.1042/Bst0270201  0.346
1998 Zhu Z, Cunane LM, Chen ZW, Durley RCE, Mathews FS, Davidson VL. Molecular basis for interprotein complex-dependent effects on the redox properties of amicyanin Biochemistry. 37: 17128-17136. PMID 9860825 DOI: 10.1021/Bi9817919  0.393
1998 Zhu Z, Davidson VL. Methylamine dehydrogenase is a light-dependent oxidase Biochimica Et Biophysica Acta - Bioenergetics. 1364: 297-300. PMID 9630684 DOI: 10.1016/S0005-2728(98)00035-8  0.344
1998 Zhu Z, Davidson VL. Redox properties of tryptophan tryptophylquinone enzymes: Correlation with structure and reactivity Journal of Biological Chemistry. 273: 14254-14260. PMID 9603931 DOI: 10.1074/Jbc.273.23.14254  0.452
1998 Davidson VL, Jones LH, Zhu Z. Site-directed mutagenesis of Phe 97 to Glu in amicyanin alters the electronic coupling for interprotein electron transfer from quinol methylamine dehydrogenase. Biochemistry. 37: 7371-7. PMID 9585551 DOI: 10.1021/Bi973020V  0.46
1998 Chen L, Doi M, Durley RCE, Chistoserdov AY, Lidstrom ME, Davidson VL, Mathews FS. Refined crystal structure of methylamine dehydrogenase from Paracoccus denitrificans at 1.75 Å resolution Journal of Molecular Biology. 276: 131-149. PMID 9514722 DOI: 10.1006/Jmbi.1997.1511  0.393
1998 Bishop GR, Zhu Z, Whitehead TL, Hicks RP, Davidson VL. Identification of reaction products and intermediates of aromatic-amine dehydrogenase by 15N and 13C NMR Biochemical Journal. 330: 1159-1163. PMID 9494080 DOI: 10.1042/Bj3301159  0.354
1997 Bishop GR, Davidson VL. Catalytic role of monovalent cations in the mechanism of proton transfer which gates an interprotein electron transfer reaction Biochemistry. 36: 13586-13592. PMID 9354627 DOI: 10.1021/bi970586a  0.313
1997 Davidson VL, Jones LH, Graichen ME, Mathews FS, Hosler JP. Factors which stabilize the methylamine dehydrogenase-amicyanin electron transfer protein complex revealed by site-directed mutagenesis. Biochemistry. 36: 12733-8. PMID 9335529 DOI: 10.1021/Bi971353M  0.412
1996 Davidson VL. Unraveling the kinetic complexity of interprotein electron transfer reactions. Biochemistry. 35: 14035-9. PMID 8916887 DOI: 10.1021/Bi961577P  0.382
1996 Falzon L, Davidson VL. Intramolecular electron transfer in trimethylamine dehydrogenase: A thermodynamic analysis Biochemistry. 35: 12111-12118. PMID 8810917 DOI: 10.1021/Bi960664E  0.445
1996 Davidson VL, Jones LH. Electron transfer from copper to heme within the methylamine dehydrogenase--amicyanin--cytochrome c-551i complex. Biochemistry. 35: 8120-5. PMID 8679563 DOI: 10.1021/Bi952854F  0.428
1996 Falzon L, Davidson VL. Kinetic model for the regulation by substrate of intramolecular electron transfer in trimethylamine dehydrogenase Biochemistry. 35: 2445-2452. PMID 8652588 DOI: 10.1021/Bi951550Q  0.445
1996 Merli A, Brodersen DE, Morini B, Chen ZW, Durley RCE, Mathews FS, Davidson VL, Rossi GL. Enzymatic and electron transfer activities in crystalline protein complexes Journal of Biological Chemistry. 271: 9177-9180. PMID 8621571 DOI: 10.1074/Jbc.271.16.9177  0.437
1996 Bishop GR, Valente EJ, Whitehead TL, Brown KL, Hicks RP, Davidson VL. Direct detection by 15N NMR of the tryptophan tryptophylquinone aminoquinol reaction intermediate of methylamine dehydrogenase Journal of the American Chemical Society. 118: 12868-12869. DOI: 10.1021/Ja9621859  0.309
1996 Falzon L, Davidson VL. Regulation of electron transfer in trimethylamine dehydrogenase by substrate Faseb Journal. 10.  0.326
1996 Falzon L, Davidson VL. Regulation of electron transfer in trjmethylamine dehydrogenase by substrate Faseb Journal. 10.  0.325
1996 Bishop GR, Davidson VL. Reaction intermediates and mechanisms for the oxidation of MADH byamicyanin Faseb Journal. 10.  0.337
1996 Bishop GR, Davidson VL. Reaction intermediates and mechanisms for the oxidation of MADH by amicyanin Faseb Journal. 10.  0.332
1995 Davidson VL, Brooks HB, Graichen ME, Jones LH, Hyun YL. Detection of intermediates in tryptophan tryptophylquinone enzymes. Methods in Enzymology. 258: 176-90. PMID 8524149 DOI: 10.1016/0076-6879(95)58046-8  0.336
1995 Edwards SL, Davidson VL, Hyun YL, Wingfield PT. Spectroscopic evidence for a common electron transfer pathway for two tryptophan tryptophylquinone enzymes Journal of Biological Chemistry. 270: 4293-4298. PMID 7876189 DOI: 10.1074/Jbc.270.9.4293  0.458
1995 Davidson VL, Jones LH. Roles of dipolar effects and local charge in the ionic strength dependence of redox reactions between c-type cytochromes. Biochemistry. 34: 1238-43. PMID 7827073 DOI: 10.1021/Bi00004A017  0.354
1995 Hyun YL, Davidson VL. Mechanistic studies of aromatic amine dehydrogenase, a tryptophan tryptophylquinone enzyme. Biochemistry. 34: 816-23. PMID 7827040 DOI: 10.1021/Bi00003A015  0.45
1995 Davidson VL, Graichen ME, Jones LH. Mechanism of reaction of allylamine with the quinoprotein methylamine dehydrogenase. The Biochemical Journal. 308: 487-92. PMID 7772031 DOI: 10.1042/Bj3080487  0.404
1995 Hyun YL, Davidson VL. Unusually large isotope effect for the reaction of aromatic amine dehydrogenase. A common feature of quinoproteins? Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 1251: 198-200. PMID 7669810 DOI: 10.1016/0167-4838(95)00117-D  0.419
1995 Loughran MG, Hall JM, Turner AP, Davidson VL. Amperometric detection of histamine at a quinoprotein dehydrogenase enzyme electrode. Biosensors & Bioelectronics. 10: 569-76. PMID 7612208 DOI: 10.1016/0956-5663(95)96932-O  0.312
1995 Davidson VL, Jones LH. Complex formation with methylamine dehydrogenase affects the pathway of electron transfer from amicyanin to cytochrome c-551i. The Journal of Biological Chemistry. 270: 23941-3. PMID 7592588 DOI: 10.1074/Jbc.270.41.23941  0.409
1995 Davidson VL, Jones LH. Reaction mechanism for the inactivation of the quinoprotein methylamine dehydrogenase by phenylhydrazine. Biochimica Et Biophysica Acta. 1252: 146-50. PMID 7548156 DOI: 10.1016/0167-4838(95)00114-A  0.417
1995 Hyun YL, Davidson VL. Electron transfer reactions between aromatic amine dehydrogenase and azurin Biochemistry. 34: 12249-12254. PMID 7547967 DOI: 10.1021/Bi00038A020  0.467
1995 Bishop GR, Davidson VL. Intermolecular electron transfer from substrate-reduced methylamine dehydrogenase to amicyanin is linked to proton transfer Biochemistry. 34: 12082-12086. PMID 7547947 DOI: 10.1021/bi00037a052  0.328
1995 Warncke K, Brooks HB, Lee HI, McCracken J, Davidson VL, Babcock GT. Structure of the dithionite-generated tryptophan tryptophylquinone cofactor radical in methylamine dehydrogenase revealed by ENDOR and ESEEM spectroscopies Journal of the American Chemical Society. 117: 10063-10075. DOI: 10.1021/Ja00145A018  0.343
1994 Harris TK, Davidson VL. Replacement of enzyme-bound calcium with strontium alters the kinetic properties of methanol dehydrogenase Biochemical Journal. 300: 175-182. PMID 8198531 DOI: 10.1042/Bj3000175  0.356
1994 Govindaraj S, Eisenstein E, Jones LH, Sanders-Loehr J, Chistoserdov AY, Davidson VL, Edwards SL. Aromatic amine dehydrogenase, a second tryptophan tryptophylquinone enzyme. Journal of Bacteriology. 176: 2922-9. PMID 8188594 DOI: 10.1128/Jb.176.10.2922-2929.1994  0.382
1994 Brooks HB, Davidson VL. Kinetic and thermodynamic analysis of a physiologic intermolecular electron-transfer reaction between methylamine dehydrogenase and amicyanin Biochemistry. 33: 5696-5701. PMID 8180195 DOI: 10.1021/Bi00185A005  0.412
1994 Chen L, Durley RCE, Mathews FS, Davidson VL. Structure of an electron transfer complex: Methylamine dehydrogenase, amicyanin, and cytochrome c551i Science. 264: 86-90. PMID 8140419 DOI: 10.1126/Science.8140419  0.422
1994 Harris TK, Davidson VL. Thermal stability of methanol dehydrogenase is altered by the replacement of enzyme-bound Ca2+ with Sr2+ Biochemical Journal. 303: 141-145. PMID 7945232 DOI: 10.1042/Bj3030141  0.342
1994 Davidson VL. Ionic strength dependence of the reaction between methanol dehydrogenase and cytochrome c-551i: evidence of conformationally coupled electron transfer Biochemistry®. 33: 12600-12608. PMID 7918485 DOI: 10.1021/Bi00208A010  0.442
1994 Brooks HB, Davidson VL. Free energy dependence of the electron transfer reaction between methylamine dehydrogenase and amicyanin Journal of the American Chemical Society. 116: 11201-11202. DOI: 10.1021/Ja00103A063  0.359
1993 Durley R, Chen L, Lim LW, Mathews FS, Davidson VL. Crystal structure analysis of amicyanin and apoamicyanin from Paracoccus denitrificans at 2.0 Å and 1.8 Å resolution Protein Science. 2: 739-752. PMID 8495197 DOI: 10.1002/Pro.5560020506  0.347
1993 Brooks HB, Jones LH, Davidson VL. Deuterium kinetic isotope effect and stopped-flow kinetic studies of the quinoprotein methylamine dehydrogenase. Biochemistry. 32: 2725-9. PMID 8448129 DOI: 10.1021/Bi00061A034  0.36
1993 Harris TK, Davidson VL. A new kinetic model for the steady-state reactions of the quinoprotein methanol dehydrogenase from Paracoccus denitrificans Biochemistry. 32: 4362-4368. PMID 8386543 DOI: 10.1021/Bi00067A028  0.429
1993 Chen L, Mathews FS, Davidson VL, Tegoni M, Rivetti C, Rossi GL. Preliminary crystal structure studies of a ternary electron transfer complex between a quinoprotein, a blue copper protein, and a c-type cytochrome Protein Science. 2: 147-154. PMID 8382992 DOI: 10.1002/Pro.5560020203  0.389
1993 Brooks HB, Davidson VL. A method for extracting rate constants from initial rates of stopped-flow kinetic data: Application to a physiological electron-transfer reaction Biochemical Journal. 294: 211-213. PMID 8363574 DOI: 10.1042/Bj2940211  0.407
1993 Davidson VL, Graichen ME, Jones LH. Binding constants for a physiologic electron-transfer protein complex between methylamine dehydrogenase and amicyanin. Effects of ionic strength and bound copper on binding. Biochimica Et Biophysica Acta. 1144: 39-45. PMID 8347660 DOI: 10.1016/0005-2728(93)90028-E  0.412
1993 Harris TK, Davidson VL. Binding and electron transfer reactions between methanol dehydrogenase and its physiologic electron acceptor cytochrome c-551i: A kinetic and thermodynamic analysis Biochemistry. 32: 14145-14150. PMID 8260498 DOI: 10.1021/Bi00214A011  0.419
1993 White S, Boyd G, Mathews FS, Xia ZX, Dai WW, Zhang YF, Davidson VL. The active site structure of the calcium-containing quinoprotein methanol dehydrogenase Biochemistry. 32: 12955-12958. PMID 8241148 DOI: 10.1021/Bi00211A002  0.42
1993 Warncke K, Brooks HB, Babcock GT, Davidson VL, McCracken J. The nitrogen atom of substrate methylamine is incorporated into the tryptophan tryptophyl-semiquinone catalytic intermediate in methylamine dehydrogenase Journal of the American Chemical Society. 115: 6464-6465. DOI: 10.1021/Ja00067A093  0.315
1992 Davidson VL, Jones LH. Cofactor-directed inactivation by nucleophilic amines of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. Biochimica Et Biophysica Acta. 1121: 104-10. PMID 1599932 DOI: 10.1016/0167-4838(92)90343-C  0.431
1992 Chen L, Durley R, Poliks BJ, Hamada K, Chen Z, Mathews FS, Davidson VL, Satow Y, Huizinga E, Vellieux FMD, Hol WGJ. Crystal structure of an electron-transfer complex between methylamine dehydrogenase and amicyanin Biochemistry. 31: 4959-4964. PMID 1599920 DOI: 10.1021/Bi00136A006  0.372
1992 Davidson VL, Jones LH, Graichen ME. Reactions of benzylamines with methylamine dehydrogenase. Evidence for a carbanionic reaction intermediate and reaction mechanism similar to eukaryotic quinoproteins. Biochemistry. 31: 3385-90. PMID 1554720  0.308
1992 Chen L, Mathews FS, Davidson VL, Huizinga EG, Vellieux FMD, Hol WGJ. Three-dimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans determined by molecular replacement at 2.8 Å resolution Proteins: Structure, Function and Genetics. 14: 288-299. PMID 1409575 DOI: 10.1002/Prot.340140214  0.327
1992 Davidson VL, Wu J, Miller B, Jones LH. Factors affecting the stability of methanol dehydrogenase from Paracoccus denitrificans. Fems Microbiology Letters. 73: 53-8. PMID 1325939 DOI: 10.1111/J.1574-6968.1992.Tb05288.X  0.327
1992 Davidson VL, Kumar MA, Wu J. Apparent oxygen-dependent inhibition by superoxide dismutase of the quinoprotein methanol dehydrogenase Biochemistry®. 31: 1504-1508. PMID 1310612 DOI: 10.1021/Bi00120A030  0.403
1991 Davidson VL, Jones LH. Inhibition by cyclopropylamine of the quinoprotein methylamine dehydrogenase is mechanism-based and causes covalent cross-linking of alpha and beta subunits. Biochemistry. 30: 1924-8. PMID 1993204 DOI: 10.1021/Bi00221A027  0.383
1991 Backes G, Davidson VL, Huitema F, Duine JA, Sanders-Loehr J. Characterization of the tryptophan-derived quinone cofactor of methylamine dehydrogenase by resonance Raman spectroscopy. Biochemistry. 30: 9201-10. PMID 1892829 DOI: 10.1021/Bi00102A011  0.327
1991 Chen L, Mathews FS, Davidson VL, Huizinga EG, Vellieux FMD, Duine JA, Hol WGJ. Crystallographic investigations of the tryptophan-derived cofactor in the quinoprotein methylamine dehydrogenase Febs Letters. 287: 163-166. PMID 1879526 DOI: 10.1016/0014-5793(91)80041-Z  0.313
1991 Davidson VL, Jones LH. Intermolecular electron transfer from quinoproteins and its relevance to biosensor technology Analytica Chimica Acta. 249: 235-240. DOI: 10.1016/0003-2670(91)87028-6  0.418
1990 Kumar MA, Davidson VL. Chemical cross-linking study of complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. Biochemistry. 29: 5299-304. PMID 2383547 DOI: 10.1021/Bi00474A012  0.362
1990 Davidson VL, Kumar MA. Inhibition by trimethylamine of methylamine oxidation by Paracoccus denitrificans and bacterium W3A1 Bba - Bioenergetics. 1016: 339-343. PMID 2331476 DOI: 10.1016/0005-2728(90)90166-2  0.347
1990 Davidson VL, Jones LH, Kumar MA. pH-dependent semiquinone formation by methylamine dehydrogenase from Paracoccus denitrificans. Evidence for intermolecular electron transfer between quinone cofactors. Biochemistry. 29: 10786-91. PMID 2271681 DOI: 10.1021/Bi00500A010  0.413
1989 Davidson VL. Steady-state kinetic analysis of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans Biochemical Journal. 261: 107-111. PMID 2775197 DOI: 10.1042/Bj2610107  0.394
1989 Byron CM, Stankovich MT, Husain M, Davidson VL. Unusual redox properties of electron-transfer flavoprotein from methylophilus methylotrophus Biochemistry. 28: 8582-8587. PMID 2605209 DOI: 10.1021/Bi00447A047  0.395
1989 Davidson VL, Kumar MA. Cytochrome c-550 mediates electron transfer from inducible periplasmic c-type cytochromes to the cytoplasmic membrane of Paracoccus denitrificans Febs Letters. 245: 271-273. PMID 2538362 DOI: 10.1016/0014-5793(89)80235-2  0.309
1988 Gray KA, Davidson VL, Knaff DB. Complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans Journal of Biological Chemistry. 263: 13987-13990. PMID 3170535  0.341
1987 Husain M, Davidson VL, Gray KA, Knaff DB. Redox properties of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans Biochemistry. 26: 4139-4143. PMID 3651442 DOI: 10.1021/Bi00387A059  0.42
1987 Husain M, Davidson VL. Purification and properties of methylamine dehydrogenase from Paracoccus denitrificans Journal of Bacteriology. 169: 1712-1717. PMID 3558322 DOI: 10.1128/Jb.169.4.1712-1717.1987  0.391
1987 Davidson VL, Neher JW. Evidence for two subclasses of methylamine dehydrogenases with distinct large subunits and conserved PQQ-bearing small subunits Fems Microbiology Letters. 44: 121-124. DOI: 10.1111/J.1574-6968.1987.Tb02254.X  0.35
1986 Davidson VL, Husain M, Neher JW. Electron transfer flavoprotein from Methylophilus methylotrophus: Properties, comparison with other electron transfer flavoproteins, and regulation of expression by carbon source Journal of Bacteriology. 166: 812-817. PMID 3711024 DOI: 10.1128/Jb.166.3.812-817.1986  0.363
1986 Gray KA, Knaff DB, Husain M, Davidson VL. Measurement of the oxidation-reduction potentials of amicyanin and c-type cytochromes from Paracoccus denitrificans Febs Letters. 207: 239-242. PMID 3021532 DOI: 10.1016/0014-5793(86)81496-X  0.317
Show low-probability matches.