Year |
Citation |
Score |
2015 |
Pieck M, Yuan Y, Godfrey J, Fisher C, Zolj S, Vaughan D, Thomas N, Wu C, Ramos J, Lee N, Normanly J, Celenza JL. Auxin and Tryptophan Homeostasis Are Facilitated by the ISS1/VAS1 Aromatic Aminotransferase in Arabidopsis. Genetics. PMID 26163189 DOI: 10.1534/Genetics.115.180356 |
0.413 |
|
2011 |
Nonhebel H, Yuan Y, Al-Amier H, Pieck M, Akor E, Ahamed A, Cohen JD, Celenza JL, Normanly J. Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Phytochemistry. 72: 37-48. PMID 21111431 DOI: 10.1016/J.Phytochem.2010.10.018 |
0.334 |
|
2009 |
Bender J, Celenza JL. Indolic glucosinolates at the crossroads of tryptophan metabolism Phytochemistry Reviews. 8: 25-37. DOI: 10.1007/S11101-008-9111-7 |
0.356 |
|
2008 |
Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences of the United States of America. 105: 8790-4. PMID 18559858 DOI: 10.1073/Pnas.0712307105 |
0.344 |
|
2005 |
Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. The Plant Cell. 17: 1090-104. PMID 15772288 DOI: 10.1105/Tpc.104.029272 |
0.361 |
|
2005 |
Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiology. 137: 253-62. PMID 15579661 DOI: 10.1104/Pp.104.054395 |
0.461 |
|
2004 |
DiDonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J, Totong R, Grisafi P, Fink GR, Celenza JL. Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. The Plant Journal : For Cell and Molecular Biology. 37: 340-53. PMID 14731255 DOI: 10.1046/J.1365-313X.2003.01964.X |
0.46 |
|
2002 |
Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL. Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome P450s CYP79B2 and CYP79B3 Genes and Development. 16: 3100-3112. PMID 12464638 DOI: 10.1101/Gad.1035402 |
0.401 |
|
2002 |
Ljun K, Hul AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology. 50: 309-32. PMID 12175022 DOI: 10.1023/A:1016024017872 |
0.366 |
|
2001 |
Celenza JL. Metabolism of tyrosine and tryptophan - New genes for old pathways Current Opinion in Plant Biology. 4: 234-240. PMID 11312134 DOI: 10.1016/S1369-5266(00)00166-7 |
0.384 |
|
2000 |
Hull AK, Vij R, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis Proceedings of the National Academy of Sciences of the United States of America. 97: 2379-2384. PMID 10681464 DOI: 10.1073/Pnas.040569997 |
0.366 |
|
1999 |
de Almeida Engler J, De Vleesschauwer V, Burssens S, Celenza JL, Inzé D, Van Montagu M, Engler G, Gheysen G. Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. The Plant Cell. 11: 793-808. PMID 10330466 DOI: 10.1105/Tpc.11.5.793 |
0.301 |
|
1995 |
Celenza JL, Grisafi PL, Fink GR. A pathway for lateral root formation in Arabidopsis thaliana Genes and Development. 9: 2131-2142. PMID 7657165 DOI: 10.1101/Gad.9.17.2131 |
0.374 |
|
1991 |
Celenza JL, Carlson M. Renaturation of protein kinase activity on protein blots Methods in Enzymology. 200: 423-430. PMID 1956328 DOI: 10.1016/0076-6879(91)00158-S |
0.317 |
|
1990 |
Marshall-Carlson L, Celenza JL, Laurent BC, Carlson M. Mutational analysis of the SNF3 glucose transporter of Saccharomyces cerevisiae Molecular and Cellular Biology. 10: 1105-1115. PMID 2406560 DOI: 10.1128/mcb.10.3.1105-1115.1990 |
0.366 |
|
1989 |
Celenza JL, Carlson M. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein Molecular and Cellular Biology. 9: 5034-5044. PMID 2557546 DOI: 10.1128/mcb.9.11.5034-5044.1989 |
0.404 |
|
1989 |
Celenza JL, Eng FJ, Carlson M. Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Molecular and Cellular Biology. 9: 5045-54. PMID 2481228 DOI: 10.1128/mcb.9.11.5045-5054.1989 |
0.414 |
|
1988 |
Celenza JL, Marshall-Carlson L, Carlson M. The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein Proceedings of the National Academy of Sciences of the United States of America. 85: 2130-2134. PMID 3281163 DOI: 10.1073/Pnas.85.7.2130 |
0.396 |
|
1987 |
Neigeborn L, Celenza JL, Carlson M. SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae Molecular and Cellular Biology. 7: 672-678. PMID 3547080 DOI: 10.1128/mcb.7.2.672-678.1987 |
0.381 |
|
1986 |
Celenza JL, Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase Science. 233: 1175-1180. PMID 3526554 DOI: 10.1126/Science.3526554 |
0.411 |
|
1985 |
Carlson M, Celenza JL, Eng FJ. Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Molecular and Cellular Biology. 5: 2894-902. PMID 3018485 DOI: 10.1128/mcb.5.11.2894-2902.1985 |
0.322 |
|
1984 |
Celenza JL, Carlson M. Structure and expression of the SNF1 gene of Saccharomyces cerevisiae Molecular and Cellular Biology. 4: 54-60. PMID 6366513 DOI: 10.1128/mcb.4.1.54-60.1984 |
0.403 |
|
1984 |
Celenza JL, Carlson M. Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae Molecular and Cellular Biology. 4: 49-53. PMID 6366512 DOI: 10.1128/mcb.4.1.49-53.1984 |
0.387 |
|
Show low-probability matches. |