336 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Lechuga A, Kazlauskas D, Salas M, Redrejo-Rodríguez M. Unlimited Cooperativity of SSB, a Novel DNA Binding Protein Related to an Atypical Group of SSBs From Protein-Primed Replicating Bacterial Viruses. Frontiers in Microbiology. 12: 699140. PMID 34267740 DOI: 10.3389/fmicb.2021.699140  0.383
2021 Lechuga A, Kazlauskas D, Salas M, Redrejo-Rodríguez M. Unlimited Cooperativity of SSB, a Novel DNA Binding Protein Related to an Atypical Group of SSBs From Protein-Primed Replicating Bacterial Viruses. Frontiers in Microbiology. 12: 699140. PMID 34267740 DOI: 10.3389/fmicb.2021.699140  0.383
2021 Del Prado A, Salas M. Strand Displacement and Unwinding Assays to Study the Concerted Action of the DNA Polymerase and SSB During Phi29 TP-DNA Replication. Methods in Molecular Biology (Clifton, N.J.). 2281: 333-342. PMID 33847970 DOI: 10.1007/978-1-0716-1290-3_22  0.439
2020 Ordóñez CD, Lechuga A, Salas M, Redrejo-Rodríguez M. Engineered viral DNA polymerase with enhanced DNA amplification capacity: a proof-of-concept of isothermal amplification of damaged DNA. Scientific Reports. 10: 15046. PMID 32929102 DOI: 10.1038/S41598-020-71773-6  0.5
2020 Flament-Simon SC, de Toro M, Chuprikova L, Blanco M, Moreno-González J, Salas M, Blanco J, Redrejo-Rodríguez M. High diversity and variability of pipolins among a wide range of pathogenic Escherichia coli strains. Scientific Reports. 10: 12452. PMID 32719405 DOI: 10.1038/S41598-020-69356-6  0.346
2019 Del Prado A, Santos E, Lázaro JM, Salas M, de Vega M. The Loop of the TPR1 Subdomain of Phi29 DNA Polymerase Plays a Pivotal Role in Primer-Terminus Stabilization at the Polymerization Active Site. Biomolecules. 9. PMID 31653090 DOI: 10.3390/biom9110648  0.441
2019 de la Torre I, Quiñones V, Salas M, Del Prado A. Tyrosines involved in the activity of φ29 single-stranded DNA binding protein. Plos One. 14: e0217248. PMID 31107918 DOI: 10.1371/Journal.Pone.0217248  0.538
2019 Del Prado A, Rodríguez I, Lázaro JM, Moreno-Morcillo M, de Vega M, Salas M. New insights into the coordination between the polymerization and 3'-5' exonuclease activities in ϕ29 DNA polymerase. Scientific Reports. 9: 923. PMID 30696917 DOI: 10.1038/S41598-018-37513-7  0.497
2018 Lechuga A, Berjón-Otero M, Salas M, Redrejo-Rodríguez M. Analysis of Direct Interaction between Viral DNA-binding Proteins by Protein Pull-down Co-immunoprecipitation Assay. Bio-Protocol. 8: e2678. PMID 34179232 DOI: 10.21769/BioProtoc.2678  0.379
2018 Lechuga A, Berjón-Otero M, Salas M, Redrejo-Rodríguez M. Analysis of Direct Interaction between Viral DNA-binding Proteins by Protein Pull-down Co-immunoprecipitation Assay. Bio-Protocol. 8: e2678. PMID 34179232 DOI: 10.21769/BioProtoc.2678  0.379
2018 Fornelos N, Browning DF, Pavlin A, Podlesek Z, Hodnik V, Salas M, Butala M. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue. Nucleic Acids Research. PMID 30053203 DOI: 10.1093/Nar/Gky646  0.431
2018 van Nies P, Westerlaken I, Blanken D, Salas M, Mencía M, Danelon C. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nature Communications. 9: 1583. PMID 29679002 DOI: 10.1038/S41467-018-03926-1  0.49
2018 Del Prado A, Franco-Echevarría E, González B, Blanco L, Salas M, de Vega M. Noncatalytic aspartate at the exonuclease domain of proofreading DNA polymerases regulates both degradative and synthetic activities. Proceedings of the National Academy of Sciences of the United States of America. PMID 29531047 DOI: 10.1073/Pnas.1718787115  0.428
2017 Redrejo-Rodríguez M, Ordóñez CD, Berjón-Otero M, Moreno-González J, Aparicio-Maldonado C, Forterre P, Salas M, Krupovic M. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements. Cell Reports. 21: 1574-1587. PMID 29117562 DOI: 10.1016/J.Celrep.2017.10.039  0.517
2017 Berjón-Otero M, Lechuga A, Mehla J, Uetz P, Salas M, Redrejo-Rodríguez M. Bam35 tectivirus intraviral interaction map unveils new function and localization of phage ORFan proteins. Journal of Virology. PMID 28747494 DOI: 10.1128/Jvi.00870-17  0.403
2016 Gella P, Salas M, Mencía M. Engineering Permissive Insertion Sites in the Bacteriophage Phi29 DNA-Linked Terminal Protein. Plos One. 11: e0164901. PMID 27780219 DOI: 10.1371/Journal.Pone.0164901  0.481
2016 Salas M, Holguera I, Redrejo-Rodríguez M, de Vega M. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication. Frontiers in Molecular Biosciences. 3: 37. PMID 27547754 DOI: 10.3389/Fmolb.2016.00037  0.551
2016 Mojardín L, Salas M. Global transcriptional analysis of virus-host interactions between phage φ29 and Bacillus subtilis. Journal of Virology. PMID 27489274 DOI: 10.1128/Jvi.01245-16  0.374
2016 Berjón-Otero M, Villar L, Salas M, Redrejo-Rodríguez M. Disclosing early steps of protein-primed genome replication of the Gram-positive tectivirus Bam35. Nucleic Acids Research. PMID 27466389 DOI: 10.1093/Nar/Gkw673  0.488
2016 Salas M, de Vega M. Protein-Primed Replication of Bacteriophage Φ29 DNA. The Enzymes. 39: 137-67. PMID 27241929 DOI: 10.1016/bs.enz.2016.03.005  0.445
2015 Del Prado A, Lázaro JM, Longás E, Villar L, de Vega M, Salas M. Insights into the Determination of the Templating Nucleotide at the Initiation of φ29 DNA Replication. The Journal of Biological Chemistry. 290: 27138-45. PMID 26400085 DOI: 10.1074/Jbc.M115.682278  0.495
2015 Fornelos N, Butala M, Hodnik V, Anderluh G, Bamford JK, Salas M. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage. Nucleic Acids Research. 43: 7315-29. PMID 26138485 DOI: 10.1093/Nar/Gkv634  0.435
2015 Berjón-Otero M, Villar L, de Vega M, Salas M, Redrejo-Rodríguez M. DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity. Proceedings of the National Academy of Sciences of the United States of America. 112: E3476-84. PMID 26100910 DOI: 10.1073/Pnas.1510280112  0.497
2015 Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Research. 43: 3643-52. PMID 25800740 DOI: 10.1093/Nar/Gkv204  0.47
2015 Köhler K, Duchardt-Ferner E, Lechner M, Damm K, Hoch PG, Salas M, Hartmann RK. Structural and mechanistic characterization of 6S RNA from the hyperthermophilic bacterium Aquifex aeolicus. Biochimie. PMID 25771336 DOI: 10.1016/J.Biochi.2015.03.004  0.301
2015 Holguera I, Muñoz-Espín D, Salas M. Dissecting the role of the ϕ29 terminal protein DNA binding residues in viral DNA replication. Nucleic Acids Research. 43: 2790-801. PMID 25722367 DOI: 10.1093/Nar/Gkv127  0.546
2014 Dahl JM, Wang H, Lázaro JM, Salas M, Lieberman KR. Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes. Biochemistry. 53: 8061-76. PMID 25478721 DOI: 10.1021/Bi501216A  0.426
2014 Redrejo-Rodríguez M, Salas M. Multiple roles of genome-attached bacteriophage terminal proteins. Virology. 468: 322-9. PMID 25232661 DOI: 10.1016/J.Virol.2014.08.003  0.462
2014 Gella P, Salas M, Mencía M. Improved artificial origins for phage Φ29 terminal protein-primed replication. Insights into early replication events. Nucleic Acids Research. 42: 9792-806. PMID 25081208 DOI: 10.1093/Nar/Gku660  0.531
2014 Dahl JM, Wang H, Lázaro JM, Salas M, Lieberman KR. Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase. The Journal of Biological Chemistry. 289: 6350-61. PMID 24464581 DOI: 10.1074/Jbc.M113.535666  0.409
2014 Santos E, Lázaro JM, Pérez-Arnaiz P, Salas M, de Vega M. Role of the LEXE motif of protein-primed DNA polymerases in the interaction with the incoming nucleotide. The Journal of Biological Chemistry. 289: 2888-98. PMID 24324256 DOI: 10.1074/Jbc.M113.530980  0.497
2014 Holguera I, Redrejo-Rodríguez M, Salas M, Muñoz-Espín D. New insights in the Ï•29 terminal protein DNA-binding and host nucleoid localization functions. Molecular Microbiology. 91: 232-41. PMID 24205926 DOI: 10.1111/Mmi.12456  0.528
2014 Redrejo-Rodríguez M, Salas ML. Repair of base damage and genome maintenance in the nucleo-cytoplasmic large DNA viruses. Virus Research. 179: 12-25. PMID 24184318 DOI: 10.1016/j.virusres.2013.10.017  0.333
2014 Morin JA, Cao FJ, Lázaro JM, Salas M, Valpuesta JM, Carrascosa JL, Ibarra B. Identification of the Translocation Step of a Replicative DNA Polymerase Biophysical Journal. 106: 229a. DOI: 10.1016/J.Bpj.2013.11.1341  0.481
2013 Mojardín L, Botet J, Quintales L, Moreno S, Salas M. New insights into the RNA-based mechanism of action of the anticancer drug 5'-fluorouracil in eukaryotic cells. Plos One. 8: e78172. PMID 24223771 DOI: 10.1371/Journal.Pone.0078172  0.31
2013 Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Nuclear and nucleoid localization are independently conserved functions in bacteriophage terminal proteins. Molecular Microbiology. 90: 858-68. PMID 24102828 DOI: 10.1111/Mmi.12404  0.312
2013 del Prado A, Lázaro JM, Villar L, Salas M, de Vega M. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site. Plos One. 8: e72765. PMID 24023769 DOI: 10.1371/Journal.Pone.0072765  0.531
2013 Ballesteros-Plaza D, Holguera I, Scheffers DJ, Salas M, Muñoz-Espín D. Phage 29 phi protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America. 110: 12313-8. PMID 23836667 DOI: 10.1073/Pnas.1311524110  0.436
2013 Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Nuclear localization signals in phage terminal proteins provide a novel gene delivery tool in mammalian cells. Communicative & Integrative Biology. 6: e22829. PMID 23750294 DOI: 10.4161/Cib.22829  0.48
2013 Baños-Sanz JI, Mojardín L, Sanz-Aparicio J, Lázaro JM, Villar L, Serrano-Heras G, González B, Salas M. Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage Φ29 DNA mimic protein p56. Nucleic Acids Research. 41: 6761-73. PMID 23671337 DOI: 10.1093/Nar/Gkt395  0.53
2012 Salas M. My life with bacteriophage phi29. The Journal of Biological Chemistry. 287: 44568-79. PMID 23124207 DOI: 10.1074/Jbc.X112.433458  0.488
2012 Rodríguez I, Longás E, de Vega M, Salas M. The essential role of the 3' terminal template base in the first steps of protein-primed DNA replication. Plos One. 7: e48257. PMID 23110220 DOI: 10.1371/Journal.Pone.0048257  0.487
2012 Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. Proceedings of the National Academy of Sciences of the United States of America. 109: 18482-7. PMID 23091024 DOI: 10.1073/Pnas.1216635109  0.424
2012 Morin JA, Cao FJ, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B. Manipulation of single polymerase-DNA complexes: a mechanical view of DNA unwinding during replication. Cell Cycle (Georgetown, Tex.). 11: 2967-8. PMID 22871727 DOI: 10.4161/Cc.21389  0.518
2012 Baños B, Villar L, Salas M, de Vega M. DNA stabilization at the Bacillus subtilis PolX core--a binding model to coordinate polymerase, AP-endonuclease and 3'-5' exonuclease activities. Nucleic Acids Research. 40: 9750-62. PMID 22844091 DOI: 10.1093/Nar/Gks702  0.5
2012 Mendieta J, Pérez-Lago L, Salas M, Camacho A. Functional specificity of a protein-DNA complex mediated by two arginines bound to the minor groove. Journal of Bacteriology. 194: 4727-35. PMID 22753063 DOI: 10.1128/Jb.00677-12  0.529
2012 Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Advances in Virus Research. 83: 219-98. PMID 22748812 DOI: 10.1016/B978-0-12-394438-2.00006-2  0.339
2012 Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B. Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences of the United States of America. 109: 8115-20. PMID 22573817 DOI: 10.1073/Pnas.1204759109  0.494
2012 Holguera I, Ballesteros-Plaza D, Muñoz-Espín D, Salas M. Disclosing the in vivo organization of a viral histone-like protein in Bacillus subtilis mediated by its capacity to recognize the viral genome. Proceedings of the National Academy of Sciences of the United States of America. 109: 5723-8. PMID 22451942 DOI: 10.1073/Pnas.1203824109  0.52
2012 Muñoz-Espín D, Serrano-Heras G, Salas M. Role of host factors in bacteriophage φ29 DNA replication. Advances in Virus Research. 82: 351-83. PMID 22420858 DOI: 10.1016/B978-0-12-394621-8.00020-0  0.505
2012 del Prado A, Villar L, de Vega M, Salas M. Involvement of residues of the 29 terminal protein intermediate and priming domains in the formation of a stable and functional heterodimer with the replicative DNA polymerase. Nucleic Acids Research. 40: 3886-97. PMID 22210885 DOI: 10.1093/Nar/Gkr1283  0.52
2011 Mencía M, Gella P, Camacho A, de Vega M, Salas M. Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage Phi29. Proceedings of the National Academy of Sciences of the United States of America. 108: 18655-60. PMID 22065756 DOI: 10.1073/Pnas.1114397108  0.543
2011 Asensio JL, Pérez-Lago L, Lázaro JM, González C, Serrano-Heras G, Salas M. Novel dimeric structure of phage φ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition. Nucleic Acids Research. 39: 9779-88. PMID 21890898 DOI: 10.1093/Nar/Gkr667  0.448
2011 Pérez-Lago L, Serrano-Heras G, Baños B, Lázaro JM, Alcorlo M, Villar L, Salas M. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56. Molecular Microbiology. 80: 1657-66. PMID 21542855 DOI: 10.1111/J.1365-2958.2011.07675.X  0.327
2011 Ibarra B, Morin J, Cao F, Salas M, Valpuesta JM, Carrascosa JL. Dna Unwinding Dynamics of a Processive DNA Polymerase Biophysical Journal. 100: 239a. DOI: 10.1016/J.Bpj.2010.12.1522  0.508
2010 Camacho A, Salas M. Molecular interactions and protein-induced DNA hairpin in the transcriptional control of bacteriophage ø29 DNA. International Journal of Molecular Sciences. 11: 5129-42. PMID 21614197 DOI: 10.3390/Ijms11125129  0.513
2010 Baños B, Villar L, Salas M, de Vega M. Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites. Proceedings of the National Academy of Sciences of the United States of America. 107: 19219-24. PMID 20974932 DOI: 10.1073/Pnas.1013603107  0.426
2010 de Vega M, Lázaro JM, Mencía M, Blanco L, Salas M. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs. Proceedings of the National Academy of Sciences of the United States of America. 107: 16506-11. PMID 20823261 DOI: 10.1073/Pnas.1011428107  0.51
2010 Muñoz-Espín D, Holguera I, Ballesteros-Plaza D, Carballido-López R, Salas M. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid. Proceedings of the National Academy of Sciences of the United States of America. 107: 16548-53. PMID 20823229 DOI: 10.1073/Pnas.1010530107  0.525
2010 Camacho A, Salas M. DNA bending and looping in the transcriptional control of bacteriophage phi29. Fems Microbiology Reviews. 34: 828-41. PMID 20412311 DOI: 10.1111/J.1574-6976.2010.00219.X  0.486
2010 Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. phi29 DNA polymerase active site: role of residue Val250 as metal-dNTP complex ligand and in protein-primed initiation. Journal of Molecular Biology. 395: 223-33. PMID 19883660 DOI: 10.1016/J.Jmb.2009.10.061  0.512
2009 Salas M. A passion for research. Cellular and Molecular Life Sciences : Cmls. 66: 3827-30. PMID 19847377 DOI: 10.1007/S00018-009-0175-3  0.525
2009 Ibarra B, Chemla YR, Plyasunov S, Smith SB, Lázaro JM, Salas M, Bustamante C. Proofreading dynamics of a processive DNA polymerase. The Embo Journal. 28: 2794-802. PMID 19661923 DOI: 10.1038/Emboj.2009.219  0.472
2009 Muñoz-Espín D, Daniel R, Kawai Y, Carballido-López R, Castilla-Llorente V, Errington J, Meijer WJ, Salas M. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. Proceedings of the National Academy of Sciences of the United States of America. 106: 13347-52. PMID 19654094 DOI: 10.1073/Pnas.0906465106  0.465
2009 Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site. Journal of Molecular Biology. 391: 797-807. PMID 19576228 DOI: 10.1016/J.Jmb.2009.06.068  0.49
2009 del Arroyo PG, Vélez M, Piétrement O, Salas M, Carrascosa JL, Camacho A. A nucleoprotein-hairpin in transcription regulation. Journal of Structural Biology. 168: 444-51. PMID 19560540 DOI: 10.1016/J.Jsb.2009.06.016  0.468
2009 Castilla-Llorente V, Meijer WJ, Salas M. Differential Spo0A-mediated effects on transcription and replication of the related Bacillus subtilis phages Nf and phi29 explain their different behaviours in vivo. Nucleic Acids Research. 37: 4955-64. PMID 19528067 DOI: 10.1093/Nar/Gkp504  0.392
2009 Redrejo-Rodríguez M, Ishchenko AA, Saparbaev MK, Salas ML, Salas J. African swine fever virus AP endonuclease is a redox-sensitive enzyme that repairs alkylating and oxidative damage to DNA. Virology. 390: 102-9. PMID 19464038 DOI: 10.1016/j.virol.2009.04.021  0.355
2009 Alcorlo M, Jiménez M, Ortega A, Hermoso JM, Salas M, Minton AP, Rivas G. Analytical ultracentrifugation studies of phage phi29 protein p6 binding to DNA. Journal of Molecular Biology. 385: 1616-29. PMID 19084023 DOI: 10.1016/J.Jmb.2008.11.044  0.504
2009 Rodríguez I, Lázaro JM, Salas M, de Vega M. Involvement of the TPR2 subdomain movement in the activities of phi29 DNA polymerase. Nucleic Acids Research. 37: 193-203. PMID 19033368 DOI: 10.1093/Nar/Gkn928  0.478
2008 Longás E, Villar L, Lázaro JM, de Vega M, Salas M. Phage phi29 and Nf terminal protein-priming domain specifies the internal template nucleotide to initiate DNA replication. Proceedings of the National Academy of Sciences of the United States of America. 105: 18290-5. PMID 19011105 DOI: 10.1073/Pnas.0809882105  0.507
2008 Baños B, Lázaro JM, Villar L, Salas M, de Vega M. Characterization of a Bacillus subtilis 64-kDa DNA polymerase X potentially involved in DNA repair. Journal of Molecular Biology. 384: 1019-28. PMID 18938175 DOI: 10.1016/J.Jmb.2008.09.081  0.502
2008 Serrano-Heras G, Bravo A, Salas M. Phage phi29 protein p56 prevents viral DNA replication impairment caused by uracil excision activity of uracil-DNA glycosylase. Proceedings of the National Academy of Sciences of the United States of America. 105: 19044-9. PMID 18845683 DOI: 10.1073/Pnas.0808797105  0.546
2008 Baños B, Lázaro JM, Villar L, Salas M, de Vega M. Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase. Nucleic Acids Research. 36: 5736-49. PMID 18776221 DOI: 10.1093/Nar/Gkn526  0.482
2008 Carrascosa JL, Méndez E, Corral J, Rubio V, Ramírez G, Salas M, Viñuela E. Structural organization of Bacillus subtilis phage phi29. A model. Virology. 111: 401-13. PMID 18635054 DOI: 10.1016/0042-6822(81)90343-3  0.365
2008 Lahoud G, Timoshchuk V, Lebedev A, de Vega M, Salas M, Arar K, Hou YM, Gamper H. Enzymatic synthesis of structure-free DNA with pseudo-complementary properties. Nucleic Acids Research. 36: 3409-19. PMID 18448471 DOI: 10.1093/Nar/Gkn209  0.437
2008 Salas M, Blanco L, Lázaro JM, de Vega M. The bacteriophage phi29 DNA polymerase. Iubmb Life. 60: 82-5. PMID 18379997 DOI: 10.1002/Iub.19  0.497
2007 Pérez-Arnaiz P, Longás E, Villar L, Lázaro JM, Salas M, de Vega M. Involvement of phage phi29 DNA polymerase and terminal protein subdomains in conferring specificity during initiation of protein-primed DNA replication. Nucleic Acids Research. 35: 7061-73. PMID 17913744 DOI: 10.1093/Nar/Gkm749  0.541
2007 Alcorlo M, Salas M, Hermoso JM. In vivo DNA binding of bacteriophage GA-1 protein p6. Journal of Bacteriology. 189: 8024-33. PMID 17873040 DOI: 10.1128/Jb.01047-07  0.511
2007 Serrano-Heras G, Ruiz-Masó JA, del Solar G, Espinosa M, Bravo A, Salas M. Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Research. 35: 5393-401. PMID 17698500 DOI: 10.1093/Nar/Gkm584  0.526
2007 de Vega M, Salas M. A highly conserved Tyrosine residue of family B DNA polymerases contributes to dictate translesion synthesis past 8-oxo-7,8-dihydro-2'-deoxyguanosine. Nucleic Acids Research. 35: 5096-107. PMID 17652324 DOI: 10.1093/Nar/Gkm545  0.428
2007 Berman AJ, Kamtekar S, Goodman JL, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. The Embo Journal. 26: 3494-505. PMID 17611604 DOI: 10.1038/Sj.Emboj.7601780  0.446
2007 Eulálio A, Nunes-Correia I, Salas J, Salas ML, Simões S, Pedroso de Lima MC. African swine fever virus p37 structural protein is localized in nuclear foci containing the viral DNA at early post-infection times. Virus Research. 130: 18-27. PMID 17580096 DOI: 10.1016/j.virusres.2007.05.009  0.322
2007 Alcorlo M, González-Huici V, Hermoso JM, Meijer WJ, Salas M. The phage phi29 membrane protein p16.7, involved in DNA replication, is required for efficient ejection of the viral genome. Journal of Bacteriology. 189: 5542-9. PMID 17526715 DOI: 10.1128/Jb.00402-07  0.521
2007 Mendieta J, Pérez-Lago L, Salas M, Camacho A. DNA sequence-specific recognition by a transcriptional regulator requires indirect readout of A-tracts. Nucleic Acids Research. 35: 3252-61. PMID 17452358 DOI: 10.1093/Nar/Gkm180  0.327
2007 Salas M. 40 years with bacteriophage ø29. Annual Review of Microbiology. 61: 1-22. PMID 17441785 DOI: 10.1146/Annurev.Micro.61.080706.093415  0.474
2007 Muñoz-Espín D, Fuertes MA, Jiménez M, Villar L, Alonso C, Rivas G, Salas M, Meijer WJ. Structural and functional analysis of phi29 p16.7C dimerization mutants: identification of a novel aromatic cage dimerization motif. The Journal of Biological Chemistry. 282: 16521-31. PMID 17426023 DOI: 10.1074/Jbc.M611778200  0.43
2006 Longás E, de Vega M, Lázaro JM, Salas M. Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity. Nucleic Acids Research. 34: 6051-63. PMID 17071961 DOI: 10.1093/Nar/Gkl769  0.523
2006 Castilla-Llorente V, Muñoz-Espín D, Villar L, Salas M, Meijer WJ. Spo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication. The Embo Journal. 25: 3890-9. PMID 16888621 DOI: 10.1038/Sj.Emboj.7601266  0.48
2006 Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. Involvement of phi29 DNA polymerase thumb subdomain in the proper coordination of synthesis and degradation during DNA replication. Nucleic Acids Research. 34: 3107-15. PMID 16757576 DOI: 10.1093/Nar/Gkl402  0.402
2006 Badia D, Camacho A, Pérez-Lago L, Escandón C, Salas M, Coll M. The structure of phage phi29 transcription regulator p4-DNA complex reveals an N-hook motif for DNA. Molecular Cell. 22: 73-81. PMID 16600871 DOI: 10.1016/J.Molcel.2006.02.019  0.492
2006 González-Huici V, Salas M, Hermoso JM. Requirements for Bacillus subtilis bacteriophage phi29 DNA ejection. Gene. 374: 19-25. PMID 16517096 DOI: 10.1016/J.Gene.2006.01.006  0.499
2006 Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. The phi29 DNA polymerase:protein-primer structure suggests a model for the initiation to elongation transition. The Embo Journal. 25: 1335-43. PMID 16511564 DOI: 10.1038/Sj.Emboj.7601027  0.53
2006 Serrano-Heras G, Salas M, Bravo A. A uracil-DNA glycosylase inhibitor encoded by a non-uracil containing viral DNA. The Journal of Biological Chemistry. 281: 7068-74. PMID 16421108 DOI: 10.1074/Jbc.M511152200  0.548
2005 Albert A, Muñoz-Espín D, Jiménez M, Asensio JL, Hermoso JA, Salas M, Meijer WJ. Structural basis for membrane anchorage of viral phi29 DNA during replication. The Journal of Biological Chemistry. 280: 42486-8. PMID 16275651 DOI: 10.1074/Jbc.C500429200  0.443
2005 Pérez-Lago L, Salas M, Camacho A. Homologies and divergences in the transcription regulatory system of two related Bacillus subtilis phages. Journal of Bacteriology. 187: 6403-9. PMID 16159774 DOI: 10.1128/Jb.187.18.6403-6409.2005  0.364
2005 Rodríguez I, Lázaro JM, Blanco L, Kamtekar S, Berman AJ, Wang J, Steitz TA, Salas M, de Vega M. A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings of the National Academy of Sciences of the United States of America. 102: 6407-12. PMID 15845765 DOI: 10.1073/Pnas.0500597102  0.527
2005 Truniger V, Bonnin A, Lázaro JM, de Vega M, Salas M. Involvement of the "linker" region between the exonuclease and polymerization domains of phi29 DNA polymerase in DNA and TP binding. Gene. 348: 89-99. PMID 15777661 DOI: 10.1016/J.Gene.2004.12.041  0.513
2005 Asensio JL, Albert A, Muñoz-Espín D, Gonzalez C, Hermoso J, Villar L, Jiménez-Barbero J, Salas M, Meijer WJ. Structure of the functional domain of phi29 replication organizer: insights into oligomerization and dna binding. The Journal of Biological Chemistry. 280: 20730-9. PMID 15772069 DOI: 10.1074/Jbc.M501687200  0.458
2005 Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. Fems Microbiology Reviews. 29: 25-47. PMID 15652974 DOI: 10.1016/J.Femsre.2004.06.003  0.5
2005 Pérez-Lago L, Salas M, Camacho A. A precise DNA bend angle is essential for the function of the phage phi29 transcriptional regulator. Nucleic Acids Research. 33: 126-34. PMID 15642698 DOI: 10.1093/Nar/Gki146  0.314
2004 González-Huici V, Alcorlo M, Salas M, Hermoso JM. Phage phi29 proteins p1 and p17 are required for efficient binding of architectural protein p6 to viral DNA in vivo. Journal of Bacteriology. 186: 8401-6. PMID 15576790 DOI: 10.1128/Jb.186.24.8401-8406.2004  0.507
2004 Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. Molecular Cell. 16: 609-18. PMID 15546620 DOI: 10.1016/J.Molcel.2004.10.019  0.534
2004 Muñoz-Espín D, Mateu MG, Villar L, Marina A, Salas M, Meijer WJ. Phage phi29 DNA replication organizer membrane protein p16.7 contains a coiled coil and a dimeric, homeodomain-related, functional domain. The Journal of Biological Chemistry. 279: 50437-45. PMID 15371435 DOI: 10.1074/Jbc.M403297200  0.456
2004 González-Huici V, Alcorlo M, Salas M, Hermoso JM. Bacteriophage Ø29 protein p6: an architectural protein involved in genome organization, replication and control of transcription. Journal of Molecular Recognition : Jmr. 17: 390-6. PMID 15362097 DOI: 10.1002/Jmr.701  0.52
2004 González-Huici V, Alcorlo M, Salas M, Hermoso JM. Binding of phage Phi29 architectural protein p6 to the viral genome: evidence for topological restriction of the phage linear DNA. Nucleic Acids Research. 32: 3493-502. PMID 15247336 DOI: 10.1093/Nar/Gkh668  0.541
2004 López-Rubio JJ, Padmanabhan S, Lázaro JM, Salas M, Murillo FJ, Elías-Arnanz M. Operator design and mechanism for CarA repressor-mediated down-regulation of the photoinducible carB operon in Myxococcus xanthus. The Journal of Biological Chemistry. 279: 28945-53. PMID 15123730 DOI: 10.1074/Jbc.M403459200  0.354
2004 González-Huici V, Salas M, Hermoso JM. Genome wide, supercoiling-dependent in vivo binding of a viral protein involved in DNA replication and transcriptional control. Nucleic Acids Research. 32: 2306-14. PMID 15118076 DOI: 10.1093/Nar/Gkh565  0.546
2004 González-Huici V, Salas M, Hermoso JM. The push-pull mechanism of bacteriophage Ø29 DNA injection. Molecular Microbiology. 52: 529-40. PMID 15066038 DOI: 10.1111/J.1365-2958.2004.03993.X  0.349
2004 Rodríguez I, Lázaro JM, Salas M, De Vega M. phi29 DNA polymerase-terminal protein interaction. Involvement of residues specifically conserved among protein-primed DNA polymerases. Journal of Molecular Biology. 337: 829-41. PMID 15033354 DOI: 10.1016/J.Jmb.2004.02.018  0.539
2004 Susanna KA, van der Werff AF, den Hengst CD, Calles B, Salas M, Venema G, Hamoen LW, Kuipers OP. Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis. Journal of Bacteriology. 186: 1120-8. PMID 14762007 DOI: 10.1128/Jb.186.4.1120-1128.2004  0.409
2004 Camacho A, Salas M. Molecular interplay between RNA polymerase and two transcriptional regulators in promoter switch. Journal of Molecular Biology. 336: 357-68. PMID 14757050 DOI: 10.1016/J.Jmb.2003.12.039  0.36
2004 Truniger V, Lázaro JM, Salas M. Function of the C-terminus of phi29 DNA polymerase in DNA and terminal protein binding. Nucleic Acids Research. 32: 361-70. PMID 14729920 DOI: 10.1093/Nar/Gkh184  0.516
2004 Truniger V, Lázaro JM, Salas M. Two positively charged residues of phi29 DNA polymerase, conserved in protein-primed DNA polymerases, are involved in stabilisation of the incoming nucleotide. Journal of Molecular Biology. 335: 481-94. PMID 14672657 DOI: 10.1016/J.Jmb.2003.10.024  0.512
2003 Dufour E, Rodríguez I, Lázaro JM, de Vega M, Salas M. A conserved insertion in protein-primed DNA polymerases is involved in primer terminus stabilisation. Journal of Molecular Biology. 331: 781-94. PMID 12909010 DOI: 10.1016/S0022-2836(03)00788-5  0.536
2003 Serrano-Heras G, Salas M, Bravo A. In vivo assembly of phage phi 29 replication protein p1 into membrane-associated multimeric structures. The Journal of Biological Chemistry. 278: 40771-7. PMID 12904294 DOI: 10.1074/Jbc.M306935200  0.483
2003 Truniger V, Lázaro JM, de Vega M, Blanco L, Salas M. phi 29 DNA polymerase residue Leu384, highly conserved in motif B of eukaryotic type DNA replicases, is involved in nucleotide insertion fidelity. The Journal of Biological Chemistry. 278: 33482-91. PMID 12805385 DOI: 10.1074/Jbc.M303052200  0.511
2003 Serna-Rico A, Muñoz-Espín D, Villar L, Salas M, Meijer WJ. The integral membrane protein p16.7 organizes in vivo phi29 DNA replication through interaction with both the terminal protein and ssDNA. The Embo Journal. 22: 2297-306. PMID 12727895 DOI: 10.1093/Emboj/Cdg221  0.476
2003 García-Escudero R, García-Díaz M, Salas ML, Blanco L, Salas J. DNA polymerase X of African swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA. Journal of Molecular Biology. 326: 1403-12. PMID 12595253  0.353
2003 Crucitti P, Abril AM, Salas M. Bacteriophage phi 29 early protein p17. Self-association and hetero-association with the viral histone-like protein p6. The Journal of Biological Chemistry. 278: 4906-11. PMID 12480935 DOI: 10.1074/Jbc.M210289200  0.419
2003 Rodríguez I, Lázaro JM, Salas M, de Vega M. phi29 DNA polymerase residue Phe128 of the highly conserved (S/T)Lx(2)h motif is required for a stable and functional interaction with the terminal protein. Journal of Molecular Biology. 325: 85-97. PMID 12473453 DOI: 10.1016/S0022-2836(02)01130-0  0.547
2002 Calles B, Salas M, Rojo F. The phi29 transcriptional regulator contacts the nucleoid protein p6 to organize a repression complex. The Embo Journal. 21: 6185-94. PMID 12426390 DOI: 10.1093/Emboj/Cdf623  0.498
2002 Abril A, Salas M, Hermoso JM. The in vivo function of phage phi29 nucleoid-associated protein p6 requires formation of dimers. Gene. 296: 187-94. PMID 12383516 DOI: 10.1016/S0378-1119(02)00857-0  0.525
2002 Truniger V, Lázaro JM, Blanco L, Salas M. A highly conserved lysine residue in phi29 DNA polymerase is important for correct binding of the templating nucleotide during initiation of phi29 DNA replication. Journal of Molecular Biology. 318: 83-96. PMID 12054770 DOI: 10.1016/S0022-2836(02)00022-0  0.535
2002 Gascón I, Carrascosa JL, Villar L, Lázaro JM, Salas M. Importance of the N-terminal region of the phage GA-1 single-stranded DNA-binding protein for its self-interaction ability and functionality. The Journal of Biological Chemistry. 277: 22534-40. PMID 11956216 DOI: 10.1074/Jbc.M202430200  0.39
2002 Truniger V, Lázaro JM, Esteban FJ, Blanco L, Salas M. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Research. 30: 1483-92. PMID 11917008 DOI: 10.1093/Nar/30.7.1483  0.515
2002 Eisenbrandt R, Lázaro JM, Salas M, de Vega M. Phi29 DNA polymerase residues Tyr59, His61 and Phe69 of the highly conserved ExoII motif are essential for interaction with the terminal protein. Nucleic Acids Research. 30: 1379-86. PMID 11884636 DOI: 10.1093/Nar/30.6.1379  0.533
2002 Serna-Rico A, Salas M, Meijer WJ. The Bacillus subtilis phage phi 29 protein p16.7, involved in phi 29 DNA replication, is a membrane-localized single-stranded DNA-binding protein. The Journal of Biological Chemistry. 277: 6733-42. PMID 11741949 DOI: 10.1074/Jbc.M109312200  0.518
2001 Camacho A, Salas M. Mechanism for the switch of phi29 DNA early to late transcription by regulatory protein p4 and histone-like protein p6. The Embo Journal. 20: 6060-70. PMID 11689446 DOI: 10.1093/Emboj/20.21.6060  0.488
2001 Brenkman AB, Heideman MR, Truniger V, Salas M, van der Vliet PC. The (I/Y)XGG motif of adenovirus DNA polymerase affects template DNA binding and the transition from initiation to elongation. The Journal of Biological Chemistry. 276: 29846-53. PMID 11390396 DOI: 10.1074/Jbc.M103159200  0.535
2001 Camacho A, Salas M. Repression of Bacteriophage φ29 Early Promoter C2 by Viral Protein p6 Is Due to Impairment of Closed Complex Journal of Biological Chemistry. 276: 28927-28932. PMID 11384991 DOI: 10.1074/Jbc.M103738200  0.466
2001 Meijer WJJ, Horcajadas JA, Salas M. φ29 Family of Phages Microbiology and Molecular Biology Reviews. 65: 261-287. PMID 11381102 DOI: 10.1128/Mmbr.65.2.261-287.2001  0.488
2001 Bravo A, Serrano-Heras G, Salas M. A Single Amino Acid Substitution within a Coiled-coil Motif Changes the Assembly of a 53-Amino Acid Protein from Two-dimensional Sheets to Filamentous Structures Journal of Biological Chemistry. 276: 21250-21256. PMID 11283004 DOI: 10.1074/Jbc.M011296200  0.337
2001 Calles B, Monsalve M, Rojo F, Salas M. A mutation in the C-terminal domain of the RNA polymerase alpha subunit that destabilizes the open complexes formed at the phage φ29 late A3 promoter Journal of Molecular Biology. 307: 487-497. PMID 11254377 DOI: 10.1006/Jmbi.2001.4511  0.355
2001 Meijer WJJ, Serna-Rico A, Salas M. Characterization of the bacteriophage phi29-encoded protein p16.7: a membrane protein involved in phage DNA replication. Molecular Microbiology. 39: 731-746. PMID 11169113 DOI: 10.1046/J.1365-2958.2001.02260.X  0.444
2000 Camacho A, Salas M. Pleiotropic effect of protein p6 on the viral cycle of bacteriophage φ29 Journal of Bacteriology. 182: 6927-6932. PMID 11092852 DOI: 10.1128/Jb.182.24.6927-6932.2000  0.455
2000 Dufour E, Méndez J, Lázaro JM, Vega Md, Blanco L, Salas M. An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein. Journal of Molecular Biology. 304: 289-300. PMID 11090274 DOI: 10.1006/Jmbi.2000.4216  0.536
2000 Vega Md, Lázaro JM, Salas M. Phage ø29 DNA polymerase residues involved in the proper stabilisation of the primer-terminus at the 3'-5' exonuclease active site Journal of Molecular Biology. 304: 1-9. PMID 11071805 DOI: 10.1006/Jmbi.2000.4178  0.459
2000 Bravo A, Illana B, Salas M. Compartmentalization of phage φ29 DNA replication: interaction between the primer terminal protein and the membrane-associated protein p1 The Embo Journal. 19: 5575-5584. PMID 11032825 DOI: 10.1093/Emboj/19.20.5575  0.507
2000 González-Huici V, Salas M, Hermoso JM. Sequence requirements for protein-primed initiation and elongation of phage O29 DNA replication. Journal of Biological Chemistry. 275: 40547-40553. PMID 11006291 DOI: 10.1074/Jbc.M007170200  0.501
2000 Serna-Rico A, Illana B, Salas M, Meijer WJJ. The Putative Coiled Coil Domain of the φ29 Terminal Protein Is a Major Determinant Involved in Recognition of the Origin of Replication Journal of Biological Chemistry. 275: 40529-40538. PMID 11005822 DOI: 10.1074/Jbc.M007855200  0.463
2000 Meijer WJJ, Lewis PJ, Errington J, Salas M. Dynamic relocalization of phage φ29 DNA during replication and the role of the viral protein p16.7 The Embo Journal. 19: 4182-4190. PMID 10921898 DOI: 10.1093/Emboj/19.15.4182  0.503
2000 Abril AM, Salas M, Hermoso JM. Identification of Residues within Two Regions Involved in Self-association of Viral Histone-like Protein p6 from Phage Ø29 Journal of Biological Chemistry. 275: 26404-26410. PMID 10829023 DOI: 10.1074/Jbc.M002739200  0.508
2000 Gonzalez-Huici V, Lazaro JM, Salas M, Hermoso JM. Specific Recognition of Parental Terminal Protein by DNA Polymerase for Initiation of Protein-primed DNA Replication Journal of Biological Chemistry. 275: 14678-14683. PMID 10799555 DOI: 10.1074/Jbc.M910058199  0.534
2000 Gascón I, Lázaro JM, Salas M. Differential functional behavior of viral ϕ29, Nf and GA-1 SSB proteins Nucleic Acids Research. 28: 2034-2042. PMID 10773070 DOI: 10.1093/Nar/28.10.2034  0.515
2000 Gascón I, Gutiérrez C, Salas M. Structural and functional comparative study of the complexes formed by viral ø29, Nf and GA-1 SSB proteins with DNA. Journal of Molecular Biology. 296: 989-999. PMID 10686098 DOI: 10.1006/Jmbi.2000.3521  0.5
2000 Truniger V, Blanco L, Salas M. Analysis of O29 DNA polymerase by partial proteolysis: binding of terminal protein in the double-stranded DNA channel. Journal of Molecular Biology. 295: 441-453. PMID 10623537 DOI: 10.1006/Jmbi.1999.3370  0.5
1999 Salas M. Mechanisms of initiation of linear DNA replication in prokaryotes Genetic Engineering. 21: 159-171. PMID 10822496 DOI: 10.1007/978-1-4615-4707-5_8  0.474
1999 Elías‐Arnanz M, Salas M. Resolution of head‐on collisions between the transcription machinery and bacteriophage Φ29 DNA polymerase is dependent on RNA polymerase translocation The Embo Journal. 18: 5675-5682. PMID 10523310 DOI: 10.1093/Emboj/18.20.5675  0.459
1999 Elías-Arnanz M, Salas M. Functional interactions between a phage histone-like protein and a transcriptional factor in regulation of φ29 early–late transcriptional switch Genes & Development. 13: 2502-2513. PMID 10521395 DOI: 10.1101/Gad.13.19.2502  0.431
1999 Abril AM, Marco S, Carrascosa JL, Salas M, Hermoso JM. Oligomeric structures of the phage phi29 histone-like protein p6. Journal of Molecular Biology. 292: 581-8. PMID 10497023 DOI: 10.1006/Jmbi.1999.3078  0.507
1999 Vega Md, Blanco L, Salas M. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage ø29 DNA polymerase Journal of Molecular Biology. 292: 39-51. PMID 10493855 DOI: 10.1006/Jmbi.1999.3052  0.485
1999 Horcajadas JA, Monsalve M, Rojo F, Salas M. The switch from early to late transcription in phage GA-1: Characterization of the regulatory protein p4(G) Journal of Molecular Biology. 290: 917-928. PMID 10438592 DOI: 10.1006/Jmbi.1999.2932  0.358
1999 Bonnin A, Lázaro JM, Blanco L, Salas M. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type φ29 DNA polymerase Journal of Molecular Biology. 290: 241-251. PMID 10388570 DOI: 10.1006/Jmbi.1999.2900  0.502
1999 Illana B, Lázaro JM, Gutiérrez C, Meijer WJJ, Blanco L, Salas M. Phage φ29 Terminal Protein Residues Asn80 and Tyr82 Are Recognition Elements of the Replication Origins Journal of Biological Chemistry. 274: 15073-15079. PMID 10329712 DOI: 10.1074/Jbc.274.21.15073  0.505
1999 Camacho A, Salas M. Effect of mutations in the 'Extended-10' motif of three Bacillus subtilis σA-RNA polymerase-dependent promoters Journal of Molecular Biology. 286: 683-693. PMID 10024443 DOI: 10.1006/Jmbi.1998.2526  0.368
1999 Truniger V, Blanco L, Salas M. Role of the “YxGG/A” motif of ø29 DNA polymerase in protein-primed replication Journal of Molecular Biology. 286: 57-69. PMID 9931249 DOI: 10.1006/Jmbi.1998.2477  0.514
1998 Crucitti P, Lázaro JM, Beneš V, Salas M. Bacteriophage O29 Early Protein P17 Is Conditionally Required For The First Rounds Of Viral Dna Replication Gene. 223: 135-142. PMID 9858710 DOI: 10.1016/S0378-1119(98)00167-X  0.486
1998 Vega Md, Blanco L, Salas M. ø29 DNA Polymerase Residue Ser122, a Single-stranded DNA Ligand for 3′-5′ Exonucleolysis, Is Required to Interact with the Terminal Protein Journal of Biological Chemistry. 273: 28966-28977. PMID 9786901 DOI: 10.1074/Jbc.273.44.28966  0.518
1998 Saturno J, Lázaro JM, Blanco L, Salas M. Role of the first aspartate residue of the “YxDTDS” motif of ø29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis Journal of Molecular Biology. 283: 633-642. PMID 9784372 DOI: 10.1006/Jmbi.1998.2121  0.488
1998 Monsalve M, Calles B, Mencía M, Rojo F, Salas M. Binding of phage Φ29 protein p4 to the early A2c promoter: Recruitment of a repressor by the RNA polymerase Journal of Molecular Biology. 283: 559-569. PMID 9784366 DOI: 10.1006/Jmbi.1998.2084  0.386
1998 Bravo I, Salas M. Polymerization of bacteriophage ∅29 replication protein p1 into protofilament sheets Embo Journal. 17: 6096-6105. PMID 9774353 DOI: 10.1093/Emboj/17.20.6096  0.433
1998 Murthy V, Meijer WJJ, Blanco L, Salas M. DNA polymerase template switching at specific sites on the phi29 genome causes the in vivo accumulation of subgenomic phi29 DNA molecules. Molecular Microbiology. 29: 787-798. PMID 9723918 DOI: 10.1046/J.1365-2958.1998.00972.X  0.468
1998 Rowe-Magnus DA, Mencia M, Rojo F, Salas M, Spiegelman GB. Transcriptional activation of the Bacillus subtilis spoIIG promoter by the response regulator Spo0A is independent of the C-terminal domain of the RNA polymerase alpha subunit Journal of Bacteriology. 180: 4760-4763. PMID 9721325 DOI: 10.1128/Jb.180.17.4760-4763.1998  0.301
1998 Illana B, Zaballos Á, Blanco L, Salas M. The RGD Sequence in Phage ø29 Terminal Protein Is Required for Interaction with ø29 DNA Polymerase Virology. 248: 12-19. PMID 9705251 DOI: 10.1006/Viro.1998.9276  0.478
1998 Vega Md, Lázaro JM, Salas M, Blanco L. Mutational analysis of ø29 DNA polymerase residues acting as ssDNA ligands for 3′-5′ exonucleolysis Journal of Molecular Biology. 279: 807-822. PMID 9642062 DOI: 10.1006/Jmbi.1998.1805  0.465
1998 Truniger V, Lázaro JM, Salas M, Blanco L. ø29 DNA polymerase requires the N-terminal domain to bind terminal protein and DNA primer substrates Journal of Molecular Biology. 278: 741-755. PMID 9614939 DOI: 10.1006/Jmbi.1998.1724  0.513
1998 Rojo F, Mencía M, Monsalve M, Salas M. Transcription activation and repression by interaction of a regulator with the alpha subunit of RNA polymerase: the model of phage phi 29 protein p4 Progress in Nucleic Acid Research and Molecular Biology. 60: 29-46. PMID 9594570 DOI: 10.1016/S0079-6603(08)60888-0  0.413
1998 Mencía M, Monsalve M, Rojo F, Salas M. Substitution of the C-terminal domain of the Escherichia coli RNA polymerase α subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator Journal of Molecular Biology. 275: 177-185. PMID 9466901 DOI: 10.1006/Jmbi.1997.1463  0.362
1997 Monsalve M, Calles B, Mencía M, Salas M, Rojo F. Transcription activation or repression by phage Φ29 protein p4 depends on the strength of the RNA polymerase-promoter interactions Molecular Cell. 1: 99-107. PMID 9659907 DOI: 10.1016/S1097-2765(00)80011-8  0.382
1997 Elías-Arnanz M, Salas M. Bacteriophage ø29 DNA replication arrest caused by codirectional and head-on collisions with the transcription machinery The Embo Journal. PMID 9312035 DOI: 10.1093/Emboj/16.18.5775  0.451
1997 Abril AM, Salas M, Andreu JM, Hermoso JM, Rivas G. Phage φ29 protein p6 is in a monomer-dimer equilibrium that shifts to higher association states at the millimolar concentrations found in vivo Biochemistry. 36: 11901-11908. PMID 9305983 DOI: 10.1021/Bi970994E  0.445
1997 Vega Md, Ilyina T, Lázaro JM, Salas M, Blanco L. An invariant lysine residue is involved in catalysis at the 3'-5' exonuclease active site of eukaryotic-type DNA polymerases. Journal of Molecular Biology. 270: 65-78. PMID 9231901 DOI: 10.1006/Jmbi.1997.1093  0.495
1997 Saturno J, Lázaro JM, Esteban FJ, Blanco L, Salas M. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding. Journal of Molecular Biology. 269: 313-325. PMID 9199402 DOI: 10.1006/Jmbi.1997.1053  0.535
1997 Bravo A, Salas M. Initiation of bacteriophage ∅29 DNA replication in vivo: Assembly of a membrane-associated multiprotein complex Journal of Molecular Biology. 269: 102-112. PMID 9193003 DOI: 10.1006/Jmbi.1997.1032  0.507
1997 Méndez J, Blanco L, Salas M. Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase The Embo Journal. 16: 2519-2527. PMID 9171364 DOI: 10.1093/Emboj/16.9.2519  0.527
1997 King AJ, Teertstra WR, Blanco L, Salas M, van der Vliet PC. Processive proofreading by the adenovirus DNA polymerase. Association with the priming protein reduces exonucleolytic degradation. Nucleic Acids Research. 25: 1745-52. PMID 9108156 DOI: 10.1093/Nar/25.9.1745  0.51
1997 Esteban JA, Blanco L, Villar L, Salas M. In vitro evolution of terminal protein-containing genomes. Proceedings of the National Academy of Sciences of the United States of America. 94: 2921-6. PMID 9096322 DOI: 10.1073/Pnas.94.7.2921  0.484
1997 Soengas MS, Mateo CR, Rivas G, Salas M, Acuña AU, Gutiérrez C. Structural features of phi29 single-stranded DNA-binding protein. II. Global conformation of phi29 single-stranded DNA-binding protein and the effects of complex formation on the protein and the single-stranded DNA. The Journal of Biological Chemistry. 272: 303-10. PMID 8995262 DOI: 10.1074/Jbc.272.1.303  0.476
1997 Soengas MS, Mateo CR, Salas M, Acuña AU, Gutierrez C. Structural features of phi29 single-stranded DNA-binding protein. I. Environment of tyrosines in terms of complex formation with DNA. The Journal of Biological Chemistry. 272: 295-302. PMID 8995261 DOI: 10.1074/Jbc.272.1.295  0.432
1996 Illana B, Blanco L, Salas M. Functional Characterization of the Genes Coding for the Terminal Protein and DNA Polymerase from Bacteriophage GA-1. Evidence for a Sliding-back Mechanism During Protein-primed GA-1 DNA Replication Journal of Molecular Biology. 264: 453-464. PMID 8969297 DOI: 10.1006/Jmbi.1996.0653  0.516
1996 Monsalve M, Mencía M, Salas M, Rojo F. Protein p4 represses phage Φ29 A2c promoter by interacting with the a α unit of Bacillus subtilis RNA polymerase Proceedings of the National Academy of Sciences of the United States of America. 93: 8913-8918. PMID 8799127 DOI: 10.1073/Pnas.93.17.8913  0.398
1996 Martı́n AC, Blanco L, Garcı́a P, Salas M, Méndez J. In VitroProtein-primed Initiation of Pneumococcal Phage Cp-1 DNA Replication Occurs at the Third 3′ Nucleotide of the Linear Template: A Stepwise Sliding-back Mechanism Journal of Molecular Biology. 260: 369-377. PMID 8757800 DOI: 10.1006/Jmbi.1996.0407  0.543
1996 Mencía M, Monsalve M, Salas M, Rojo F. Transcriptional activator of phage Φ29 late promoter: Mapping of residues involved in interaction with RNA polymerase and in DNA bending Molecular Microbiology. 20: 273-282. PMID 8733227 DOI: 10.1111/J.1365-2958.1996.Tb02616.X  0.527
1996 Mencía M, Monsalve M, Rojo F, Salas M. Transcription activation by phage Φ29 protein p4 is mediated by interaction with the α subunit of Bacillus subtilis RNA polymerase Proceedings of the National Academy of Sciences of the United States of America. 93: 6616-6620. PMID 8692866 DOI: 10.1073/Pnas.93.13.6616  0.388
1996 Blanco L, Salas M. Relating structure to function in φ29 DNA polymerase Journal of Biological Chemistry. 271: 8509-8512. PMID 8621470 DOI: 10.1074/Jbc.271.15.8509  0.435
1996 Salas M, Miller JT, Leis J, Depamphilis ML. Mechanisms for Priming DNA Synthesis Cold Spring Harbor Monograph Archive. 31: 131-176. DOI: 10.1101/087969459.31.131  0.514
1996 Truniger V, Lázaro JM, Salas M, Blanco L. A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases. The Embo Journal. 15: 3430-3441. DOI: 10.1002/J.1460-2075.1996.Tb00709.X  0.5
1996 Monsalve M, Mencía M, Rojo F, Salas M. Activation and repression of transcription at two different phage phi29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase The Embo Journal. 15: 383-391. DOI: 10.1002/J.1460-2075.1996.Tb00368.X  0.441
1995 Lázaro JM, Blanco L, Salas M. Purification of bacteriophage phi 29 DNA polymerase. Methods in Enzymology. 262: 42-49. PMID 8594366 DOI: 10.1016/0076-6879(95)62007-9  0.517
1995 Blanco L, Salas M. Mutational analysis of bacteriophage Φ29 DNA polymerase Methods in Enzymology. 262: 283-294. PMID 8594354 DOI: 10.1016/0076-6879(95)62024-9  0.514
1995 Saturno J, Blanco L, Salas M, Esteban JA. A novel kinetic analysis to calculate nucleotide affinity of proofreading DNA polymerases. Application to phi 29 DNA polymerase fidelity mutants. The Journal of Biological Chemistry. 270: 31235-43. PMID 8537389 DOI: 10.1074/Jbc.270.52.31235  0.496
1995 Monsalve M, Mencía M, Rojo F, Salas M. Transcription Regulation in Bacillus subtilis Phage Φ29: Expression of the Viral Promoters throughout the Infection Cycle Virology. 207: 23-31. PMID 7871731 DOI: 10.1006/Viro.1995.1048  0.399
1995 Blasco MA, Méndez J, Lázaro JM, Blanco L, Salas M. Primer terminus stabilization at the phi 29 DNA polymerase active site. Mutational analysis of conserved motif KXY. The Journal of Biological Chemistry. 270: 2735-40. PMID 7852344 DOI: 10.1074/Jbc.270.6.2735  0.514
1995 Salas M, Freire R, Soengas MS, Esteban JA, Méndez J, Bravo A, Serrano M, Blasco MA, Lázaro JM, Blanco L. Protein-nucleic acid interactions in bacteriophage phi 29 DNA replication. Fems Microbiology Reviews. 17: 73-82. PMID 7669351 DOI: 10.1111/J.1574-6976.1995.Tb00189.X  0.565
1995 Soengas MS, Gutiérrez C, Salas M. Helix-destabilizing activity of phi 29 single-stranded DNA binding protein: effect on the elongation rate during strand displacement DNA replication. Journal of Molecular Biology. 253: 517-529. PMID 7473731 DOI: 10.1006/Jmbi.1995.0570  0.52
1994 Soengas MS, Esteban JA, Salas M, Gutiérrez C. Complex formation between phage phi 29 single-stranded DNA binding protein and DNA. Journal of Molecular Biology. 239: 213-26. PMID 8196055 DOI: 10.1006/Jmbi.1994.1364  0.453
1994 Nuez B, Rojo F, Salas M. Requirement for an A-tract Structure at the Binding Site of Phage φ29 Transcriptional Activator Journal of Molecular Biology. 237: 175-181. PMID 8126731 DOI: 10.1006/Jmbi.1994.1219  0.452
1994 Hermoso JM, Freire R, Bravo A, Gutiérrez C, Serrano M, Salas M. DNA structure in the nucleoprotein complex that activates replication of phage Ø/29 Biophysical Chemistry. 50: 183-189. PMID 8011933 DOI: 10.1016/0301-4622(94)85030-5  0.552
1994 Bravo A, Hermoso JM, Salas M. In vivo functional relationships among terminal proteins of Bacillus subtilis φ29-related phages Gene. 148: 107-112. PMID 7926823 DOI: 10.1016/0378-1119(94)90242-9  0.492
1994 Bravo A, Hermoso JM, Salas M. A genetic approach to the identification of functional amino acids in protein p6 of Bacillus subtilis phage ø29 Molecular Genetics and Genomics. 245: 529-536. PMID 7808404 DOI: 10.1007/Bf00282215  0.48
1994 Serrano M, Gutiérrez C, Freire R, Bravo A, Salas M, Hermoso JM. Phage Ø29 protein p6: A viral histone-like protein Biochimie. 76: 981-991. PMID 7748942 DOI: 10.1016/0300-9084(94)90023-X  0.523
1994 Freire R, Salas M, Hermoso JM. A new protein domain for binding to DNA through the minor groove. The Embo Journal. 13: 4353-4360. DOI: 10.1002/J.1460-2075.1994.Tb06755.X  0.508
1994 Gutiérrez C, Freire R, Salas M, Hermoso JM. Assembly of phage phi 29 genome with viral protein p6 into a compact complex The Embo Journal. 13: 269-276. DOI: 10.1002/J.1460-2075.1994.Tb06257.X  0.466
1993 Pakula TM, Caldentey J, Gutiérrez C, Olkkonen VM, Salas M, Bamford DH. Overproduction, purification, and characterization of DNA-binding protein P19 of bacteriophage PRD1. Gene. 126: 99-104. PMID 8472964 DOI: 10.1016/0378-1119(93)90595-T  0.512
1993 Rojo F, Nuez B, Mencía M, Salas M. The main early and late promoters of Bacillus subtilis phage ø29 form unstable open complexes with σA-RNA polymerase that are stabilized by DNA supercoiling Nucleic Acids Research. 21: 935-940. PMID 8451193 DOI: 10.1093/Nar/21.4.935  0.32
1993 Serrano M, Gutiérrez C, Salas M, Hermoso JM. Superhelical Path of the DNA in the Nucleoprotein Complex that Activates the Initiation of Phage φ29 DNA Replication Journal of Molecular Biology. 230: 248-259. PMID 8450539 DOI: 10.1006/Jmbi.1993.1140  0.542
1993 Mencı́a M, Salas M, Rojo F. Residues of the Bacillus subtilis phage Φ29 Transcriptional Activator Required Both to Interact with RNA Polymerase and to Activate Transcription Journal of Molecular Biology. 233: 695-704. PMID 8411175 DOI: 10.1006/Jmbi.1993.1546  0.474
1993 Caldentey J, Blanco L, Bamford DH, Salas M. In vitro replication of bacteriophage PRD1 DNA. Characterization of the protein-primed initiation site. Nucleic Acids Research. 21: 3725-30. PMID 8367287 DOI: 10.1093/Nar/21.16.3725  0.533
1993 Serrano M, Salas M, Hermoso JM. Multimeric complexes formed by DNA-binding proteins of low sequence specificity Trends in Biochemical Sciences. 18: 202-206. PMID 8346553 DOI: 10.1016/0968-0004(93)90187-R  0.526
1993 Nuez B, Salas M. Bacteriophage Nf DNA region controlling late transcription: Structural and functional homology with bacteriophage φ29 Nucleic Acids Research. 21: 2861-2865. PMID 8332494 DOI: 10.1093/Nar/21.12.2861  0.454
1992 Blanco L, Bernad A, Salas M. Evidence favouring the hypothesis of a conserved 3′–5′ exonuclease active site in DNA-dependent DNA polymerases Gene. 112: 139-144. PMID 1551594 DOI: 10.1016/0378-1119(92)90316-H  0.498
1992 Nuez B, Rojo F, Salas M. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts. Proceedings of the National Academy of Sciences of the United States of America. 89: 11401-11405. PMID 1454827 DOI: 10.1073/Pnas.89.23.11401  0.479
1992 Méndez J, Blanco L, Esteban JA, Bernad A, Salas M. Initiation of phi 29 DNA replication occurs at the second 3' nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proceedings of the National Academy of Sciences of the United States of America. 89: 9579-83. PMID 1409668 DOI: 10.1073/Pnas.89.20.9579  0.54
1992 Caldentey J, Blanco L, Savilahti H, Bamford DH, Salas M. In vitro replication of bacteriophage PRD1 DNA. Metal activation of protein-primed initiation and DNA elongation. Nucleic Acids Research. 20: 3971-6. PMID 1324473 DOI: 10.1093/Nar/20.15.3971  0.519
1992 Esteban JA, Bernad A, Salas M, Blanco L. Metal activation of synthetic and degradative activities of phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication. Biochemistry. 31: 350-9. PMID 1310035 DOI: 10.1021/Bi00117A006  0.497
1992 Blasco MA, Esteban JA, Méndez J, Blanco L, Salas M. Structural and functional studies on phi 29 DNA polymerase. Chromosoma. 102: S32-8. PMID 1291240 DOI: 10.1007/Bf02451783  0.558
1992 Soengas MS, Esteban JA, Lázaro JM, Bernad A, Blasco MA, Salas M, Blanco L. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3'-5' exonuclease and strand-displacement activities. The Embo Journal. 11: 4227-4237. DOI: 10.1002/J.1460-2075.1992.Tb05517.X  0.518
1991 Pakula TM, Caldentey J, Serrano M, Gutierrez C, Hermoso JM, Salas M, Bamford DH. Characterization of a DNA binding protein of bacteriophage PRD1 involved in DNA replication. Nucleic Acids Research. 18: 6553-7. PMID 2251117 DOI: 10.1093/Nar/18.22.6553  0.551
1991 Blanco L, Bernad A, Blasco MA, Salas M. A general structure for DNA-dependent DNA polymerases. Gene. 100: 27-38. PMID 2055476 DOI: 10.1016/0378-1119(91)90346-D  0.518
1991 Blanco L, Bernad A, Salas M. MIP1 DNA polymerase of S. cerevisiae: structural similarity with the E. coli DNA polymerase I-type enzymes. Nucleic Acids Research. 19: 955-955. PMID 2017377 DOI: 10.1093/Nar/19.4.955  0.466
1991 Serrano M, Barthelemy I, Salas M. Transcription activation at a distance by phage φ29 protein p4: Effect of bent and non-bent intervening DNA sequences Journal of Molecular Biology. 219: 403-414. PMID 1904941 DOI: 10.1016/0022-2836(91)90182-6  0.418
1991 Nuez B, Rojo F, Barthelemy I, Salas M. Identification of the sequences recognized by phage ϕ29 transcriptional activator: possible interaction between the activator and the RNA polymerase Nucleic Acids Research. 19: 2337-2342. PMID 1904153 DOI: 10.1093/Nar/19.9.2337  0.408
1991 Salas M. Protein-priming of DNA replication Annual Review of Biochemistry. 60: 39-71. PMID 1883199 DOI: 10.1146/Annurev.Bi.60.070191.000351  0.505
1991 Gutiérrez C, Sogo J, Salas M. Analysis of replicative intermediates produced during bacteriophage φ29 DNA replication in vitro Journal of Molecular Biology. 222: 983-994. PMID 1762160 DOI: 10.1016/0022-2836(91)90589-X  0.502
1991 Rojo F, Salas M. A DNA curvature can substitute phage phi 29 regulatory protein p4 when acting as a transcriptional repressor. The Embo Journal. 10: 3429-3438. DOI: 10.1002/J.1460-2075.1991.Tb04907.X  0.514
1990 Garmendia C, Hermoso J, Salas M. Functional domain for priming activity in the phage φ29 terminal protein Gene. 88: 73-79. PMID 2341040 DOI: 10.1016/0378-1119(90)90061-U  0.483
1990 Bernad A, Lazaro JM, Salas M, Blanco L. The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage phi 29 DNA polymerase for protein-primed initiation and polymerization. Proceedings of the National Academy of Sciences of the United States of America. 87: 4610-4614. PMID 2191296 DOI: 10.1073/Pnas.87.12.4610  0.453
1990 Rojo F, Salas M. Short N-terminal deletions in the phage φ29 transcriptional activator protein impair its DNA-binding ability Gene. 96: 75-81. PMID 2125015 DOI: 10.1016/0378-1119(90)90343-P  0.433
1990 Bernad A, Blanco L, Salas M. Site-directed mutagenesis of the YCDTDS amino acid motif of the Φ29 DNA polymerase Gene. 94: 45-51. PMID 2121621 DOI: 10.1016/0378-1119(90)90466-5  0.347
1990 Serrano M, Salas M, Hermoso JM. A novel nucleoprotein complex at a replication origin Science. 248: 1012-1016. PMID 2111580 DOI: 10.1126/Science.2111580  0.491
1990 Rojo F, Zaballos A, Salas M. Bend induced by the phage φ29 transcriptional activator in the viral late promoter is required for activation Journal of Molecular Biology. 211: 713-725. PMID 2107318 DOI: 10.1016/0022-2836(90)90072-T  0.42
1990 Otero MJ, Lázaro JM, Salas M. Deletions at the N terminus of bacteriophage φ29 protein p6: DNA binding and activity in φ29 DNA replication Gene. 95: 25-30. PMID 1979302 DOI: 10.1016/0378-1119(90)90409-K  0.529
1989 Barthelemy I, Mellado RP, Salas M. In vitro transcription of bacteriophage phi 29 DNA: inhibition of early promoters by the viral replication protein p6. Journal of Virology. 63: 460-462. PMID 2908927 DOI: 10.1128/Jvi.63.1.460-462.1989  0.443
1989 Bernad A, Blanco L, Lázaro JM, Martín G, Salas M. A conserved 3'----5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell. 59: 219-228. PMID 2790959 DOI: 10.1016/0092-8674(89)90883-0  0.509
1989 Zaballos A, Salas M. Functional domains in the bacteriophage ø29 terminal protein for interaction with the ø29 DNA polymerase and with DNA Nucleic Acids Research. 17: 10353-10366. PMID 2602154 DOI: 10.1093/Nar/17.24.10353  0.539
1989 Prieto I, Méndez E, Salas M. Characterization, overproduction and purification of the product of gene 1 of Bacillus subtilis phage φ29 Gene. 77: 195-204. PMID 2526779 DOI: 10.1016/0378-1119(89)90067-X  0.475
1989 Barthelemy I, Salas M. Characterization of a new prokaryotic transcriptional activator and its DNA recognition site Journal of Molecular Biology. 208: 225-232. PMID 2504924 DOI: 10.1016/0022-2836(89)90384-7  0.52
1989 Otero MJ, Salas M. Regions at the carboxyl end of bacteriophage ø29 protein P6 required for DNA binding and activity in ø29 DNA replication Nucleic Acids Research. 17: 4567-4577. PMID 2501757 DOI: 10.1093/Nar/17.12.4567  0.548
1989 Martín G, Lázaro JM, Méndez E, Salas M. Characterization of the phage π29 protein p5 as a single-stranded DNA binding protein. Function in π29 DNA-protein p3 replication Nucleic Acids Research. 17: 3663-3672. PMID 2499869 DOI: 10.1093/Nar/17.10.3663  0.523
1989 Escarmís C, Guirao D, Salas M. Replication of recombinant φ29 DNA molecules in Bacillus subtilis protoplasts Virology. 169: 152-160. PMID 2493706 DOI: 10.1016/0042-6822(89)90051-2  0.528
1989 Serrano M, Gutiérrez J, Prieto I, Hermoso JM, Salas M. Signals at the bacteriophage phi 29 DNA replication origins required for protein p6 binding and activity. The Embo Journal. 8: 1879-1885. DOI: 10.1002/J.1460-2075.1989.Tb03584.X  0.54
1988 Gutiérrez J, Garmendia C, Salas M. Characterization of the origins of replication of bacteriophage ø29 DNA Nucleic Acids Research. 16: 5895-5914. PMID 3399382 DOI: 10.1093/Nar/16.13.5895  0.483
1988 Vega Md, Salas M. Protein-Primed Replication of Bacteriophage ø29 DNA Biochimica Et Biophysica Acta. 951: 419-424. PMID 3207763 DOI: 10.1016/0167-4781(88)90115-7  0.494
1988 Blanco L, Bernad A, Salas M. Transition from initiation to elongation in protein-primed phi 29 DNA replication: salt-dependent stimulation by the viral protein p6. Journal of Virology. 62: 4167-4172. PMID 3172342 DOI: 10.1128/Jvi.62.11.4167-4172.1988  0.445
1988 Barthelemy I, Mellado RP, Salas M. Symmetrical transcription in bacteriophage φ29 DNA Biochimie. 70: 605-609. PMID 3139079 DOI: 10.1016/0300-9084(88)90243-X  0.394
1988 Garmendia C, Salas M, Hermoso JM. Site-directed mutagenesis in the DNA linking site of bacteriophage ø29 terminal protein: isolation and characterization of a Ser232→Thr mutant Nucleic Acids Research. 16: 5727-5740. PMID 3135531 DOI: 10.1093/Nar/16.13.5727  0.49
1988 Prieto I, Serrano M, Lázaro JM, Salas M, Hermoso JM. Interaction of the bacteriophage phi 29 protein p6 with double-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America. 85: 314-318. PMID 3124105 DOI: 10.1073/Pnas.85.2.314  0.543
1988 Martin G, Salas M. Characterization and cloning of gene 5 of Bacillus subtilis phage φ29 Gene. 67: 193-201. PMID 2971594 DOI: 10.1016/0378-1119(88)90396-4  0.402
1988 Mellado RP, Barthelemy I, Salas M. TRANSCRIPTION INITIATION AND TERMINATION SIGNALS OF THE BACILLUS SUBTILIS PHAGE ϕ29 DNA Genetics and Biotechnology of Bacilli. 215-219. DOI: 10.1016/B978-0-12-274161-6.50041-3  0.453
1987 Blanco L, Prieto I, Gutiérrez J, Bernad A, Lázaro JM, Hermoso JM, Salas M. Effect of NH4+ ions on phi 29 DNA-protein p3 replication: formation of a complex between the terminal protein and the DNA polymerase. Journal of Virology. 61: 3983-3991. PMID 3682063 DOI: 10.1128/Jvi.61.12.3983-3991.1987  0.484
1987 Barthelemy I, Lázaro JM, Méndez E, Mellado RP, Salas M. Purification in an active form of the phage ø29 protein p4 that controls the viral late transcription Nucleic Acids Research. 15: 7781-7793. PMID 3671066 DOI: 10.1093/Nar/15.19.7781  0.426
1987 Zaballos A, Salas M, Mellado RP. A set of expression plasmids for the synthesis of fused and unfused polypeptides in Escherichia coli Gene. 58: 67-76. PMID 3319785 DOI: 10.1016/0378-1119(87)90030-8  0.403
1987 Barthelemy I, Salas M, Mellado RP. In vivo transcription of bacteriophage phi 29 DNA: transcription termination. Journal of Virology. 61: 1751-1755. PMID 3033305 DOI: 10.1128/Jvi.61.5.1751-1755.1987  0.476
1987 Pulido D, Jiménez A, Salas M, Mellado RP. A Bacillus subtilis phage φ29 transcription terminator is efficiently recognized in Streptomyces lvidans Gene. 56: 277-282. PMID 2824291 DOI: 10.1016/0378-1119(87)90144-2  0.391
1987 Bernad A, Zaballos A, Salas M, Blanco L. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. The Embo Journal. 6: 4219-4225. DOI: 10.1002/J.1460-2075.1987.Tb02770.X  0.512
1986 Zaballos A, Mellado RP, Salas M. Initiation of phage φ29 DNA replication by mutants with deletions at the carboxyl end of the terminal protein Gene. 63: 113-121. PMID 3133284 DOI: 10.1016/0378-1119(88)90550-1  0.501
1986 Pulido D, Jiménez A, Salas M, Mellado RP. Bacillus subtilis phage φ29 main promoters are efficiently recognized in vivo by the Streptomyces lividans RNA polymerase Gene. 49: 377-382. PMID 3106159 DOI: 10.1016/0378-1119(86)90374-4  0.409
1986 Mellado RP, Barthelemy I, Salas M. In Vivo transcription of bacteriophage Φ29 DNA early and late promoter sequences Journal of Molecular Biology. 191: 191-197. PMID 3100809 DOI: 10.1016/0022-2836(86)90256-1  0.358
1986 Gutiérrez J, Vinós J, Prieto I, Méndez E, Hermoso JM, Salas M. Signals in the phi 29 DNA-terminal protein template for the initiation of phage phi 29 DNA replication. Virology. 155: 474-83. PMID 3097958 DOI: 10.1016/0042-6822(86)90209-6  0.544
1986 Herranz L, Salas M, Carrascosa JL. Interaction of the bacteriophage phi 29 connector protein with the viral DNA. Virology. 155: 289-92. PMID 3095983 DOI: 10.1016/0042-6822(86)90191-1  0.549
1986 Blanco L, Salas M. Effect of aphidicolin and nucleotide analogs on the phage θ29 DNA polymerase Virology. 153: 179-187. PMID 3090778 DOI: 10.1016/0042-6822(86)90021-8  0.524
1986 Blanco L, Gutièrrez J, Làzaro JM, Bernad A, Salas M. Replication of phage φ29 DNA in vitro: role of the viral protein p6 in initiation and elongation Nucleic Acids Research. 14: 4923-4937. PMID 3088545 DOI: 10.1093/Nar/14.12.4923  0.516
1986 Mellado RP, Barthelemy I, Salas M. In vitro transcription of bacteriophage φ29 DNA. Correlation between in vitro and in vivo promoters Nucleic Acids Research. 14: 4731-4741. PMID 3088543 DOI: 10.1093/Nar/14.12.4731  0.427
1986 García P, Hermoso JM, García JA, García E, López R, Salas M. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP. Journal of Virology. 58: 31-35. PMID 3081736 DOI: 10.1128/Jvi.58.1.31-35.1986  0.372
1986 Barthelemy I, Salas M, Mellado RP. In vivo transcription of bacteriophage phi 29 DNA: transcription initiation sites. Journal of Virology. 60: 874-879. PMID 3023677 DOI: 10.1128/Jvi.60.3.874-879.1986  0.339
1986 Gutiérrez J, García JA, Blanco L, Salas M. Cloning and template activity of the origins of replication of phage Φ29 DNA Gene. 43: 1-11. PMID 3019829 DOI: 10.1016/0378-1119(86)90002-8  0.531
1985 Hermoso JM, Méndez E, Soriano F, Salas M. Location of the serine residue involved in the linkage between the terminal protein and the DNA of phage φ29 Nucleic Acids Research. 13: 7715-7728. PMID 3934646 DOI: 10.1093/Nar/13.21.7715  0.499
1985 Blanco L, Salas M. Replication of phage Φ29 DNA with purified terminal protein and DNA polymerase: Synthesis of full-length Φ29 DNA Proceedings of the National Academy of Sciences of the United States of America. 82: 6404-6408. PMID 3863101 DOI: 10.1073/Pnas.82.19.6404  0.545
1985 Pastrana R, Lázaro JM, Blanco L, García JA, Méndez E, Salas M. Overproduction and purification of protein P6 of Bacillus subtilis phage φ29: role in the initiation of DNA replication Nucleic Acids Research. 13: 3083-3100. PMID 3158884 DOI: 10.1093/Nar/13.9.3083  0.514
1985 Escarmis C, Garcia P, Mendez E, López R, Salas M, García E. Inverted terminal repeats and terminal proteins of the genomes of pneumococcal phages Gene. 36: 341-348. PMID 3000885 DOI: 10.1016/0378-1119(85)90189-1  0.318
1985 Blanco L, Salas M. Characterization of a 3′ → 5′ exonuclease activity in the phage φ29-encoded DNA polymerase Nucleic Acids Research. 13: 1239-1249. PMID 2987819 DOI: 10.1093/Nar/13.4.1239  0.531
1984 Escarmís C, Gómez A, García E, Ronda C, López R, Salas M. Nucleotide sequence at the termini of the DNA of Streptococcus pneumoniae phage Cp-1. Virology. 133: 166-171. PMID 6702104 DOI: 10.1016/0042-6822(84)90435-5  0.458
1984 Blanco L, Salas M. Characterization and purification of a phage ∅29-encoded DNA polymerase required for the initiation of replication Proceedings of the National Academy of Sciences of the United States of America. 81: 5325-5329. PMID 6433348 DOI: 10.1073/Pnas.81.17.5325  0.51
1984 Prieto I, Lázaro JM, García JA, Hermoso JM, Salas M. Purification in a functional form of the terminal protein of Bacillus subtilis phage phi 29 Proceedings of the National Academy of Sciences of the United States of America. 81: 1639-1643. PMID 6424120 DOI: 10.1073/Pnas.81.6.1639  0.437
1984 Blanco L, García JA, Lázaro JM, Salas M. Overproduction and purification of the gene 2 product involved in the initiation of phage phi 29 replication. Advances in Experimental Medicine and Biology. 179: 193-197. PMID 6395657 DOI: 10.1007/978-1-4684-8730-5_19  0.509
1984 Ibáñez C, García JA, Carrascosa JL, Salas M. Overproduction and purification of the connector protein of Bacillus subtilis phage phi 29. Nucleic Acids Research. 12: 2351-65. PMID 6324116 DOI: 10.1093/Nar/12.5.2351  0.405
1984 Sogo JM, Lozano M, Salas M. In vitro transcription of the Bacillus subtilis phage ø DNA by Bacillus subtilis and Escherichia coli RNA polymerases Nucleic Acids Research. 12: 1943-1960. PMID 6322128 DOI: 10.1093/Nar/12.4.1943  0.318
1984 García JA, Peñalva MÁ, Blanco L, Salas M. Template requirements for initiation of phage phi 29 DNA replication in vitro. Proceedings of the National Academy of Sciences of the United States of America. 81: 80-84. PMID 6320176 DOI: 10.1073/Pnas.81.1.80  0.535
1984 García JA, Méndez E, Salas M. Cloning, nucleotide sequence and high level expression of the gene coding for the connector protein of Bacillus subtilis phage φ 29 Gene. 30: 87-98. PMID 6096227 DOI: 10.1016/0378-1119(84)90108-2  0.391
1984 Blanco L, García JA, Salas M. Cloning and expression of gene 2, required for the protein-primed initiation of the Bacillus subtilis phage φ29 DNA replication Gene. 29: 33-40. PMID 6092229 DOI: 10.1016/0378-1119(84)90163-X  0.491
1984 Salas M, Mellado RP, Lazaro JM, Sogo JM. In Vitro Transcription Of Bacteriophage Q29 Dna1 Genetics and Biotechnology of Bacilli. 195-208. DOI: 10.1016/B978-0-12-274160-9.50021-7  0.426
1984 Salas M, Blanco L, Prieto I, García JA, Mellado RP, Lázaro JM, Hermoso JM. In vitro replication of bacteriophage phi 29. Advances in Experimental Medicine and Biology. 179: 35-44. DOI: 10.1007/978-1-4684-8730-5_3  0.527
1983 García JA, Carrascosa JL, Salas M. Assembly of the tail protein of the Bacillus subtilis phage phi 29. Virology. 125: 18-30. PMID 6402855 DOI: 10.1016/0042-6822(83)90060-0  0.342
1983 Blanco L, García JA, Peñalva MÁ, Salas M. Factors involved in the initiation of phage ø29 DNA replication in vitro: requirement of the gene 2 product for the formation of the protein p3-dAMP complex Nucleic Acids Research. 11: 1309-1323. PMID 6402761 DOI: 10.1093/Nar/11.5.1309  0.531
1983 Mellado RP, Salas M. Initiation of phage π29 DNA replication by the terminal protein modified at the carboxyl end Nucleic Acids Research. 11: 7397-7407. PMID 6316260 DOI: 10.1093/Nar/11.21.7397  0.533
1983 García JA, Pastrana R, Prieto I, Salas M. Cloning and expression in Escherichia coli of the gene coding for the protein linked to the ends of Bacillus subtilis phage φ 29 DNA Gene. 21: 65-76. PMID 6301951 DOI: 10.1016/0378-1119(83)90148-8  0.461
1982 Carrascosa JL, García JA, Salas M. A protein similar to Escherichia coli gro EL is present in Bacillus subtilis. Journal of Molecular Biology. 158: 731-7. PMID 6811760 DOI: 10.1016/0022-2836(82)90257-1  0.37
1982 Sogo JM, García JA, Peñalva MÁ, Salas M. Structure of protein-containing replicative intermediates of Bacillus subtilis phage φ29 DNA Virology. 116: 1-18. PMID 6801848 DOI: 10.1016/0042-6822(82)90398-1  0.533
1982 Escarnís C, Salas M. Nucleotide sequence of the early genes 3 and 4 of bacteriophage ø29 Nucleic Acids Research. 10: 5785-5798. PMID 6292852 DOI: 10.1093/Nar/10.19.5785  0.383
1982 Mellado RP, Salas M. High level synthesis in Escherichia coli of the Bacillus subtilis phage phi 29 proteins p3 and p4 under the control of phage lambda PL promoter. Nucleic Acids Research. 10: 5773-5784. PMID 6292851 DOI: 10.1093/Nar/10.19.5773  0.505
1981 Krawiec S, Jiménez F, García JA, Villanueva N, Sogo J, Salas M. The orderly, in vitro emergence of DNA from bacteriophage phi29 particles. Virology. 111: 440-54. PMID 18635055 DOI: 10.1016/0042-6822(81)90347-0  0.427
1981 Villanueva N, Salas M. Adsorption of bacteriophage φ29 to Bacillus subtilis through the neck appendages of the viral particle Journal of Virology. 38: 15-19. PMID 7241648 DOI: 10.1128/Jvi.38.1.15-19.1981  0.348
1981 Villanueva N, Lázaro JM, Salas M. Purification, properties and assembly of the neck-appendage protein of the Bacillus subtilis phage phi 29 European Journal of Biochemistry. 117: 499-505. PMID 6793359 DOI: 10.1111/J.1432-1033.1981.Tb06365.X  0.348
1981 Escarmis C, Salas M. Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage φ29 Proceedings of the National Academy of Sciences of the United States of America. 78: 1446-1450. PMID 6262800 DOI: 10.1073/Pnas.78.3.1446  0.467
1980 García JA, Salas M. Bacteriophage φ{symbol}29 infection of Bacillus subtilis minicells Mgg Molecular &Amp; General Genetics. 180: 539-545. PMID 6780760 DOI: 10.1007/Bf00268058  0.331
1980 Hermoso JM, Salas M. Protein p3 is linked to the DNA of phage ∅29 through a phosphoester bond between serine and 5'-dAMP Proceedings of the National Academy of Sciences of the United States of America. 77: 6425-6428. PMID 6779279 DOI: 10.1073/Pnas.77.11.6425  0.478
1980 Mellado RP, Peñalva MA, Inciarte MR, Salas M. The protein covalently linked to the 5′ termini of the DNA of Bacillus subtilis phage θ29 is involved in the initiation of DNA replication Virology. 104: 84-96. PMID 6771916 DOI: 10.1016/0042-6822(80)90367-0  0.495
1980 Inciarte MR, Salas M, Sogo JM. Structure of replicating DNA molecules of Bacillus subtilis bacteriophage phi 29. Journal of Virology. 34: 187-199. PMID 6768899 DOI: 10.1128/Jvi.34.1.187-199.1980  0.496
1979 Sogo JM, Rodeño P, Koller T, Viñuela E, Salas M. Comparison of the A-T rich regions and the Bacillus subtilis RNA polymerase binding sites in phage phi 29 DNA. Nucleic Acids Research. 7: 107-120. PMID 114982 DOI: 10.1093/Nar/7.1.107  0.485
1979 Camacho A, Jiménez F, Viñuela E, Salas M. Order of assembly of the lower collar and the tail proteins of Bacillus subtilis bacteriophage phi 29. Journal of Virology. 29: 540-545. PMID 107325 DOI: 10.1128/Jvi.29.2.540-545.1979  0.405
1978 Salas M, Mellado RP, Viñuela E, Sogo JM. Characterization of a protein covalently linked to the 5′ termini of the DNA of Bacillus subtilis phage φ29 Journal of Molecular Biology. 119: 269-291. PMID 416224 DOI: 10.1016/0022-2836(78)90438-2  0.537
1977 Mellado RP, Méndez E, Viñuela E, Salas M. Order of the two major head protein genes of bacteriophage phi 29 of Bacillus subtilis. Journal of Virology. 24: 378-382. PMID 409855 DOI: 10.1128/Jvi.24.1.378-382.1977  0.317
1977 Camacho A, Jiménez F, De La Torre J, Carrascosa JL, Mellado RP, Vásquez C, Viñuela E, Salas M. Assembly of Bacillus subtilis phage phi29. 1. Mutants in the cistrons coding for the structural proteins. European Journal of Biochemistry. 73: 39-55. PMID 402269 DOI: 10.1111/J.1432-1033.1977.Tb11290.X  0.458
1977 Viñuela E, Camacho A, Jiménez F, Carrascosa JL, Ramírez G, Salas M. Structure and assembly of phage phi29. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 276: 29-35. PMID 13432 DOI: 10.1098/Rstb.1976.0095  0.359
1976 Inciarte MR, Viñuela E, Salas M. Transcription in Vitro of φ 29 DNA and EcoRI Fragments by Bacillus subtilis RNA Polymerase Febs Journal. 71: 77-83. PMID 827446 DOI: 10.1111/J.1432-1033.1976.Tb11091.X  0.35
1976 Carrascosa JL, Camacho A, Moreno F, Jiménez F, Mellado RP, Viñuela E, Salas M. Bacillus subtilis phage phi29. Characterization of gene products and functions. European Journal of Biochemistry. 66: 229-41. PMID 820555 DOI: 10.1111/J.1432-1033.1976.Tb10512.X  0.397
1976 Inciarte MR, Lázaro J, Salas M, Viñuela E. Physical map of bacteriophage ∅29 DNA Virology. 74: 314-323. DOI: 10.1016/0042-6822(76)90338-X  0.42
1975 Camacho A, Moreno F, Carrascosa JL, Viñuela E, Salas M. A suppressor of nonsense mutations in Bacillus subtilis. European Journal of Biochemistry. 47: 199-205. PMID 4215652 DOI: 10.1111/J.1432-1033.1974.Tb03683.X  0.319
1975 Carrascosa JL, Jiménez F, Viñuela E, Salas M. Synthesis in vitro of phi29-specific early proteins directed by phage DNA. European Journal of Biochemistry. 51: 587-91. PMID 807475 DOI: 10.1111/J.1432-1033.1975.Tb03960.X  0.442
1974 Jiménez F, Avila J, Viñuela E, Salas M. Initiation of the transcription of Φ29 DNA by Bacillus subtilis RNA polymerase Biochimica Et Biophysica Acta. 349: 320-327. PMID 4210355 DOI: 10.1016/0005-2787(74)90119-1  0.373
1973 Carrascosa J, Viñuela E, Salas M. Proteins induced in Bacillusus subtilis infected with bacteriophage φ29 Virology. 56: 291-299. DOI: 10.1016/0042-6822(73)90307-3  0.382
1972 Talavera A, Salas M, Viñuela E. Temperature-sensitive mutants affected in DNA synthesis in phage phi29 of Bacillus subtilis. Febs Journal. 31: 367-371. PMID 4630506 DOI: 10.1111/J.1432-1033.1972.Tb02542.X  0.457
1972 Hermoso JM, Avila J, Jiménez F, Salas M. RNA polymerase from Bacillus amyloliquefaciens. Biochimica Et Biophysica Acta. 277: 280-283. PMID 4627588 DOI: 10.1016/0005-2787(72)90409-1  0.332
1971 Ortǐn J, Viñuela E, Salas M, Vasquez C. DNA-protein complex in circular DNA from phage phi-29 Nature: New Biology. 234: 275-277. PMID 5002464 DOI: 10.1038/Newbio234275A0  0.493
1971 Ávila J, Hermoso JM, Viñuela E, Salas M. Purification and Properties of DNA‐Dependent RNA Polymerase from Bacillus subtilis Vegetative Cells Febs Journal. 21: 526-535. PMID 4999759 DOI: 10.1111/J.1432-1033.1971.Tb01498.X  0.336
1970 Ávila J, Hermoso JM, Viñuela E, Salas M. Subunit Composition of B. subtilis RNA Polymerase Nature. 226: 1244-1245. PMID 4987217 DOI: 10.1038/2261244A0  0.398
1968 Salas ML, Salas J, Sols A. Desensitization of yeast phosphofructokinase to ATP inhibition by treatment with trypsin Biochemical and Biophysical Research Communications. 31: 461-466. PMID 4231669 DOI: 10.1016/0006-291X(68)90499-3  0.5
1967 Viñuela E, Salas M, Ochoa S. Translation of the genetic message, iii. Formylmethionine as initiator of proteins programed by polycistronic messenger RNA. Proceedings of the National Academy of Sciences of the United States of America. 57: 729-34. PMID 16591524 DOI: 10.1073/Pnas.57.3.729  0.492
1967 Salas M, Hille MB, Last JA, Wahba AJ, Ochoa S. Translation of the genetic message, ii. Effect of initiation factors on the binding of formyl-methionyl-trna to ribosomes. Proceedings of the National Academy of Sciences of the United States of America. 57: 387-94. PMID 16591482 DOI: 10.1073/Pnas.57.2.387  0.622
1967 Salas M, Miller MJ, Wahba AJ, Ochoa S. Translation of the genetic message. V. Effect of Mg++ and formylation of methionine in protein synthesis. Proceedings of the National Academy of Sciences of the United States of America. 57: 1865-9. PMID 5340638 DOI: 10.1073/Pnas.57.6.1865  0.486
1967 Last JA, Stanley WM, Salas M, Hille MB, Wahba AJ, Ochoa S. Translation of the genetic message, IV. UAA as a chain termination codon. Proceedings of the National Academy of Sciences of the United States of America. 57: 1062-7. PMID 5231346 DOI: 10.1073/Pnas.57.4.1062  0.639
1966 Stanley WM, Salas M, Wahba AJ, Ochoa S. Translation of the genetic message: factors involved in the initiation of protein synthesis. Proceedings of the National Academy of Sciences of the United States of America. 56: 290-5. PMID 5338590 DOI: 10.1073/Pnas.56.1.290  0.492
1966 Smith MA, Salas M, Stanley WM, Wahba AJ, Ochoa S. Effect of polyadenylic acid chain length on the size distribution of lysine peptides. Acta Biochimica Polonica. 13: 361-5. PMID 5336165  0.357
1966 Smith MA, Salas M, Stanley WM, Wahba AJ, Ochoa S. Direction of reading of the genetic message. II. Proceedings of the National Academy of Sciences of the United States of America. 55: 141-7. PMID 5328637 DOI: 10.1073/Pnas.55.1.141  0.434
1965 Gancedo C, Salas ML, Giner A, Sols A. Reciprocal effects of carbon sources on the levels of an AMP-sensitive fructose-1,6-diphosphatase and phosphofructokinase in yeast Biochemical and Biophysical Research Communications. 20: 15-16. PMID 14341932 DOI: 10.1016/0006-291X(65)90944-7  0.646
1965 Salas ML, Viñuela E, Salas M, Sols A. Citrate inhibition of phosphofructokinase and the Pasteur effect Biochemical and Biophysical Research Communications. 19: 371-376. PMID 14317405 DOI: 10.1016/0006-291X(65)90471-7  0.549
1965 SALAS J, SALAS M, VINUELA E, SOLS A. GLUCOKINASE OF RABBIT LIVER. The Journal of Biological Chemistry. 240: 1014-1018. PMID 14284695  0.474
1965 SALAS M, VINUELA E, SOLS A. SPONTANEOUS AND ENZYMATICALLY CATALYZED ANOMERIZATION OF GLUCOSE The Journal of Biological Chemistry. 240: 561-568. PMID 14275652  0.478
1965 Salas M, Smith MA, Stanley WM, Wahba AJ, Ochoa S. Direction of reading of the genetic message. The Journal of Biological Chemistry. 240: 3988-95. PMID 5320647 DOI: 10.13039/100000002  0.443
1964 Sols A, Salas M, Viñuela E. Induced biosynthesis of liver glucokinase Advances in Enzyme Regulation. 2: 177-188. PMID 5863085 DOI: 10.1016/S0065-2571(64)80012-1  0.559
1964 Viñuela E, Salas ML, Salas M, Sols A. Two interconvertible forms of yeast phosphofructokinase with different sensitivity to endproduct inhibition Biochemical and Biophysical Research Communications. 15: 243-249. PMID 4220804 DOI: 10.1016/0006-291X(64)90154-8  0.56
1964 Salas M, Viñuela E, Salas J, Sols A. Muscle fructose-1, 6-diphosphatase☆ Biochemical and Biophysical Research Communications. 17: 150-155. DOI: 10.1016/0006-291X(64)90136-6  0.542
1963 SALAS M, VINUELA E, SOLS A. INSULIN-DEPENDENT SYNTHESIS OF LIVER GLUCOKINASE IN THE RAT. The Journal of Biological Chemistry. 238: 3535-3538. PMID 14109182  0.489
1963 Viñuela E, Salas ML, Sols A. End-product inhibition of yeast phosphofructokinase by ATP Biochemical and Biophysical Research Communications. 12: 140-145. PMID 13997410 DOI: 10.1016/0006-291X(63)90250-X  0.511
1963 VINUELA E, SALAS M, SOLS A. Glucokinase and hexokinase in liver in relation to glycogen synthesis. The Journal of Biological Chemistry. 238: 1175-1177. PMID 13997409  0.493
Show low-probability matches.