Year |
Citation |
Score |
2025 |
Widney KA, Phillips LC, Rusch LM, Copley SD. A cheater founds the winning lineages during evolution of a novel metabolic pathway. Biorxiv : the Preprint Server For Biology. PMID 39990456 DOI: 10.1101/2025.01.26.634942 |
0.33 |
|
2022 |
Copley SD, Newton MS, Widney KA. How to Recruit a Promiscuous Enzyme to Serve a New Function. Biochemistry. PMID 35729117 DOI: 10.1021/acs.biochem.2c00249 |
0.443 |
|
2020 |
Copley SD. Evolution of new enzymes by gene duplication and divergence. The Febs Journal. 287: 1262-1283. PMID 32250558 DOI: 10.1111/Febs.15299 |
0.459 |
|
2019 |
Morgenthaler AB, Kinney WR, Ebmeier CC, Walsh CM, Snyder DJ, Cooper VS, Old WM, Copley SD. Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome. Elife. 8. PMID 31815667 DOI: 10.7554/Elife.53535 |
0.433 |
|
2019 |
Kim J, Flood JJ, Kristofich MR, Gidfar C, Morgenthaler AB, Fuhrer T, Sauer U, Snyder D, Cooper VS, Ebmeier CC, Old WM, Copley SD. Hidden resources in the genome restore PLP synthesis and robust growth after deletion of the essential gene . Proceedings of the National Academy of Sciences of the United States of America. PMID 31712440 DOI: 10.1073/Pnas.1915569116 |
0.473 |
|
2019 |
Morgenthaler AB, Kinney WR, Ebmeier CC, Walsh CM, Snyder DJ, Cooper VS, Old WM, Copley SD. Author response: Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome Elife. DOI: 10.7554/Elife.53535.Sa2 |
0.312 |
|
2018 |
Flood JJ, Copley SD. Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum. Msystems. 3. PMID 30505947 DOI: 10.1128/mSystems.00275-18 |
0.334 |
|
2018 |
Kristofich J, Morgenthaler AB, Kinney WR, Ebmeier CC, Snyder DJ, Old WM, Cooper VS, Copley SD. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. Plos Genetics. 14: e1007615. PMID 30148850 DOI: 10.1371/Journal.Pgen.1007615 |
0.403 |
|
2018 |
Mikkonen A, Yläranta K, Tiirola M, Dutra LAL, Salmi P, Romantschuk M, Copley S, Ikäheimo J, Sinkkonen A. Successful aerobic bioremediation of groundwater contaminated with higher chlorinated phenols by indigenous degrader bacteria. Water Research. 138: 118-128. PMID 29574199 DOI: 10.1016/J.Watres.2018.03.033 |
0.343 |
|
2017 |
Copley SD. Shining a light on enzyme promiscuity. Current Opinion in Structural Biology. 47: 167-175. PMID 29169066 DOI: 10.1016/J.Sbi.2017.11.001 |
0.506 |
|
2016 |
Kershner JP, Yu McLoughlin S, Kim J, Morgenthaler A, Ebmeier CC, Old WM, Copley SD. A Synonymous Mutation Upstream of the Gene Encoding a Weak-link Enzyme Causes an Ultrasensitive Response in Growth Rate. Journal of Bacteriology. PMID 27501982 DOI: 10.1128/Jb.00262-16 |
0.423 |
|
2016 |
Thiaville JJ, Flood J, Yurgel S, Prunetti L, Elbadawi-Sidhu M, Hutinet G, Forouhar F, Zhang X, Ganesan V, Reddy P, Fiehn O, Gerlt JA, Hunt JF, Copley SD, De Crecy-Lagard V. Members of a novel kinase family (DUF1537) can recycle toxic intermediates into an essential metabolite. Acs Chemical Biology. PMID 27294475 DOI: 10.1021/Acschembio.6B00279 |
0.367 |
|
2015 |
Copley SD. An evolutionary biochemist's perspective on promiscuity. Trends in Biochemical Sciences. 40: 72-8. PMID 25573004 DOI: 10.1016/J.Tibs.2014.12.004 |
0.461 |
|
2015 |
Khanal A, Yu McLoughlin S, Kershner JP, Copley SD. Differential effects of a mutation on the normal and promiscuous activities of orthologs: implications for natural and directed evolution. Molecular Biology and Evolution. 32: 100-8. PMID 25246702 DOI: 10.1093/Molbev/Msu271 |
0.451 |
|
2014 |
Rudolph J, Erbse AH, Behlen LS, Copley SD. A radical intermediate in the conversion of pentachlorophenol to tetrachlorohydroquinone by Sphingobium chlorophenolicum. Biochemistry. 53: 6539-49. PMID 25238136 DOI: 10.1021/Bi5010427 |
0.49 |
|
2013 |
Novikov Y, Copley SD. Reactivity landscape of pyruvate under simulated hydrothermal vent conditions. Proceedings of the National Academy of Sciences of the United States of America. 110: 13283-8. PMID 23872841 DOI: 10.1073/Pnas.1304923110 |
0.357 |
|
2013 |
Yadid I, Rudolph J, Hlouchova K, Copley SD. Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol. Proceedings of the National Academy of Sciences of the United States of America. 110: E2182-90. PMID 23676275 DOI: 10.1073/Pnas.1214052110 |
0.712 |
|
2013 |
Kim J, Copley SD. The orphan protein bis-γ-glutamylcystine reductase joins the pyridine nucleotide disulfide reductase family. Biochemistry. 52: 2905-13. PMID 23560638 DOI: 10.1021/Bi4003343 |
0.416 |
|
2012 |
Kim J, Copley SD. Inhibitory cross-talk upon introduction of a new metabolic pathway into an existing metabolic network. Proceedings of the National Academy of Sciences of the United States of America. 109: E2856-64. PMID 22984162 DOI: 10.1073/Pnas.1208509109 |
0.382 |
|
2012 |
Hlouchova K, Rudolph J, Pietari JM, Behlen LS, Copley SD. Pentachlorophenol hydroxylase, a poorly functioning enzyme required for degradation of pentachlorophenol by Sphingobium chlorophenolicum. Biochemistry. 51: 3848-60. PMID 22482720 DOI: 10.1021/Bi300261P |
0.742 |
|
2012 |
Copley SD, Rokicki J, Turner P, Daligault H, Nolan M, Land M. The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biology and Evolution. 4: 184-98. PMID 22179583 DOI: 10.1093/Gbe/Evr137 |
0.362 |
|
2012 |
Copley SD. Toward a systems biology perspective on enzyme evolution. The Journal of Biological Chemistry. 287: 3-10. PMID 22069330 DOI: 10.1074/Jbc.R111.254714 |
0.478 |
|
2010 |
Kim J, Kershner JP, Novikov Y, Shoemaker RK, Copley SD. Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5'-phosphate synthesis. Molecular Systems Biology. 6: 436. PMID 21119630 DOI: 10.1038/Msb.2010.88 |
0.524 |
|
2010 |
Rudolph J, Kim J, Copley SD. Multiple turnovers of the nicotino-enzyme PdxB require α-keto acids as cosubstrates. Biochemistry. 49: 9249-55. PMID 20831184 DOI: 10.1021/Bi101291D |
0.452 |
|
2010 |
Copley SD, Crooks GP. Enzymic Dehalogenation of 4-Chlorobenzoyl Coenzyme A in Acinetobacter sp. Strain 4-CB1. Applied and Environmental Microbiology. 58: 1385-7. PMID 16348702 DOI: 10.1128/Aem.58.4.1385-1387.1992 |
0.437 |
|
2009 |
Copley SD. Prediction of function in protein superfamilies. F1000 Biology Reports. 1: 91. PMID 20948600 DOI: 10.3410/B1-91 |
0.393 |
|
2009 |
Copley SD. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nature Chemical Biology. 5: 559-66. PMID 19620997 DOI: 10.1038/Nchembio.197 |
0.403 |
|
2008 |
McLoughlin SY, Copley SD. A compromise required by gene sharing enables survival: Implications for evolution of new enzyme activities. Proceedings of the National Academy of Sciences of the United States of America. 105: 13497-502. PMID 18757760 DOI: 10.1073/Pnas.0804804105 |
0.419 |
|
2008 |
Warner JR, Behlen LS, Copley SD. A trade-off between catalytic power and substrate inhibition in TCHQ dehalogenase. Biochemistry. 47: 3258-65. PMID 18275157 DOI: 10.1021/Bi702431N |
0.659 |
|
2007 |
Warner JR, Copley SD. Pre-steady-state kinetic studies of the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase. Biochemistry. 46: 13211-22. PMID 17956123 DOI: 10.1021/Bi701069N |
0.658 |
|
2007 |
Kim J, Copley SD. Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose. Biochemistry. 46: 12501-11. PMID 17935357 DOI: 10.1021/Bi7014629 |
0.45 |
|
2007 |
Warner JR, Copley SD. Mechanism of the severe inhibition of tetrachlorohydroquinone dehalogenase by its aromatic substrates. Biochemistry. 46: 4438-47. PMID 17355122 DOI: 10.1021/Bi0620104 |
0.67 |
|
2005 |
Warner JR, Lawson SL, Copley SD. A mechanistic investigation of the thiol-disulfide exchange step in the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase. Biochemistry. 44: 10360-8. PMID 16042413 DOI: 10.1021/Bi050666B |
0.654 |
|
2005 |
Morowitz HJ, Srinivasan V, Copley S, Smith E. The simplest enzyme revisited: The chicken and egg argument solved Complexity. 10: 12-13. DOI: 10.1002/Cplx.20087 |
0.387 |
|
2004 |
Copley SD, Novak WR, Babbitt PC. Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry. 43: 13981-95. PMID 15518547 DOI: 10.1021/Bi048947R |
0.314 |
|
2004 |
Dai M, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Applied and Environmental Microbiology. 70: 2391-7. PMID 15066836 DOI: 10.1128/Aem.70.4.2391-2397.2004 |
0.338 |
|
2003 |
Copley SD. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Current Opinion in Chemical Biology. 7: 265-72. PMID 12714060 DOI: 10.1016/S1367-5931(03)00032-2 |
0.377 |
|
2003 |
Dai M, Rogers JB, Warner JR, Copley SD. A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). Journal of Bacteriology. 185: 302-10. PMID 12486067 DOI: 10.1128/Jb.185.1.302-310.2003 |
0.615 |
|
2002 |
Copley SD, Dhillon JK. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biology. 3: research0025. PMID 12049666 DOI: 10.1186/Gb-2002-3-5-Research0025 |
0.365 |
|
2002 |
Kiefer PM, Copley SD. Characterization of the initial steps in the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase. Biochemistry. 41: 1315-22. PMID 11802732 DOI: 10.1021/Bi0117504 |
0.484 |
|
2002 |
Kiefer PM, McCarthy DL, Copley SD. The reaction catalyzed by tetrachlorohydroquinone dehalogenase does not involve nucleophilic aromatic substitution. Biochemistry. 41: 1308-14. PMID 11802731 DOI: 10.1021/Bi0117495 |
0.484 |
|
2000 |
Copley SD. Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends in Biochemical Sciences. 25: 261-5. PMID 10838562 DOI: 10.1016/S0968-0004(00)01562-0 |
0.508 |
|
2000 |
Anandarajah K, Kiefer PM, Donohoe BS, Copley SD. Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol Biochemistry. 39: 5303-5311. PMID 10820000 DOI: 10.1021/Bi9923813 |
0.483 |
|
1999 |
Xu L, Resing K, Lawson SL, Babbitt PC, Copley SD. Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry. 38: 7659-69. PMID 10387005 DOI: 10.1021/Bi990103Y |
0.445 |
|
1999 |
Copley SD. Microbial dehalogenases: enzymes recruited to convert xenobiotic substrates. Current Opinion in Chemical Biology. 2: 613-7. PMID 9818187 DOI: 10.1016/S1367-5931(98)80092-6 |
0.457 |
|
1997 |
McCarthy DL, Claude AA, Copley SD. In vivo levels of chlorinated hydroquinones in a pentachlorophenol-degrading bacterium. Applied and Environmental Microbiology. 63: 1883-8. PMID 9143119 DOI: 10.1128/Aem.63.5.1883-1888.1997 |
0.31 |
|
1997 |
Willett WS, Copley SD. Identification and localization of a stable sulfenic acid in peroxide-treated tetrachlorohydroquinone dehalogenase using electrospray mass spectrometry. Chemistry & Biology. 3: 851-7. PMID 8939704 DOI: 10.1016/S1074-5521(96)90071-X |
0.336 |
|
1997 |
McCarthy DL, Louie DF, Copley SD. Identification of a Covalent Intermediate between Glutathione and Cysteine13 Formed during Catalysis by Tetrachlorohydroquinone Dehalogenase Journal of the American Chemical Society. 119: 11337-11338. DOI: 10.1021/Ja9726365 |
0.395 |
|
1996 |
McCarthy DL, Navarrete S, Willett WS, Babbitt PC, Copley SD. Exploration of the relationship between tetrachlorohydroquinone dehalogenase and the glutathione S-transferase superfamily. Biochemistry. 35: 14634-42. PMID 8931562 DOI: 10.1021/bi961730f |
0.362 |
|
1995 |
Crooks GP, Xu L, Barkley RM, Copley SD. Exploration of possible mechanisms for 4-chlorobenzoyl CoA dehalogenase: Evidence for an aryl-enzyme intermediate Journal of the American Chemical Society. 117: 10791-10798. DOI: 10.1021/Ja00149A001 |
0.519 |
|
1994 |
Crooks GP, Copley SD. Purification and characterization of 4-chlorobenzoyl CoA dehalogenase from Arthrobacter sp. strain 4-CB1. Biochemistry. 33: 11645-9. PMID 7918379 DOI: 10.1021/Bi00204A028 |
0.364 |
|
1993 |
Crooks GP, Copley SD. A surprising effect of leaving group on the nucleophilic aromatic substitution reaction catalyzed by 4-chlorobenzoyl CoA dehalogenase Journal of the American Chemical Society. 115: 6422-6423. DOI: 10.1021/Ja00067A072 |
0.396 |
|
1987 |
Guilford WJ, Copley SD, Knowles JR. The mechanism of the chorismate mutase reaction Journal of the American Chemical Society. 109: 5013-5019. DOI: 10.1021/Ja00250A041 |
0.342 |
|
1987 |
Copley SD, Knowles JR. The conformational equilibrium of chorismate in solution: Implications for the mechanism of the non-enzymic and the enzyme-catalyzed rearrangement of chorismate to prephenate Journal of the American Chemical Society. 109: 5008-5013. DOI: 10.1021/Ja00250A040 |
0.429 |
|
1987 |
Copley SD, Knowles JR. The conformational equilibrium of chorismate in solution: implications for the mechanism of the non-enzymic and the enzyme-catalyzed rearrangement of chorismate to prephenate Journal of the American Chemical Society. 109: 5008-5013. DOI: 10.1021/ja00250a040 |
0.325 |
|
Show low-probability matches. |