Clyde L. Denis - Publications

Affiliations: 
University of New Hampshire, Durham, NH, United States 
Area:
Molecular Biology, Biochemistry

55/58 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Cui Y, Chiang YC, Viswanathan P, Lee DJ, Denis CL. SPT5 affects the rate of mRNA degradation and physically interacts with CCR4 but does not control mRNA deadenylation. American Journal of Molecular Biology. 2: 11-20. PMID 36910576 DOI: 10.4236/ajmb.2012.21002  0.686
2021 Park S, Wang X, Xi W, Richardson R, Laue TM, Denis CL. The non-prion SUP35 preexists in large chaperone-containing molecular complexes. Proteins. PMID 34791707 DOI: 10.1002/prot.26282  0.458
2018 Denis CL, Laue TM, Wang X. Identification of a 57S translation complex containing closed-loop factors and the 60S ribosome subunit. Scientific Reports. 8: 11468. PMID 30065356 DOI: 10.1038/S41598-018-29832-6  0.541
2017 Denis CL, Richardson R, Park S, Zhang C, Xi W, Laue TM, Wang X. Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size. Proteins. PMID 29139201 DOI: 10.1002/Prot.25422  0.724
2016 Wang X, Xi W, Toomey S, Chiang YC, Hasek J, Laue TM, Denis CL. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation. Plos One. 11: e0150616. PMID 26953568 DOI: 10.1371/Journal.Pone.0150616  0.511
2014 Zhang C, Wang X, Park S, Chiang YC, Xi W, Laue TM, Denis CL. Only a subset of the PAB1-mRNP proteome is present in mRNA translation complexes. Protein Science : a Publication of the Protein Society. 23: 1036-49. PMID 24838188 DOI: 10.1002/Pro.2490  0.676
2013 Zhang C, Lee DJ, Chiang YC, Richardson R, Park S, Wang X, Laue TM, Denis CL. The RRM1 domain of the poly(A)-binding protein from Saccharomyces cerevisiae is critical to control of mRNA deadenylation. Molecular Genetics and Genomics : Mgg. 288: 401-12. PMID 23793387 DOI: 10.1007/S00438-013-0759-3  0.691
2012 Richardson R, Denis CL, Zhang C, Nielsen ME, Chiang YC, Kierkegaard M, Wang X, Lee DJ, Andersen JS, Yao G. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein. Molecular Genetics and Genomics : Mgg. 287: 711-30. PMID 22836166 DOI: 10.1007/S00438-012-0709-5  0.735
2012 Wang X, Zhang C, Chiang YC, Toomey S, Power MP, Granoff ME, Richardson R, Xi W, Lee DJ, Chase S, Laue TM, Denis CL. Use of the novel technique of analytical ultracentrifugation with fluorescence detection system identifies a 77S monosomal translation complex. Protein Science : a Publication of the Protein Society. 21: 1253-68. PMID 22733647 DOI: 10.1002/Pro.2110  0.716
2012 Anderson B, May CA, Denis CL. Identification of <i>ebs1</i>, <i>lsm6</i> and <i>nup159</i> as suppressors of <i>spt</i>10 effects at <i>ADH</i>2 in <i>Saccharomyces cerevisiae</i> suggests post-transcriptional defects affect mRNA synthesis American Journal of Molecular Biology. 2: 276-285. DOI: 10.4236/Ajmb.2012.23029  0.563
2012 Cui Y, Chiang Y, Viswanathan P, Lee DJ, Denis CL. SPT5 affects the rate of mRNA degradation and physically interacts with CCR4 but does not control mRNA deadenylation American Journal of Molecular Biology. 2: 11-20. DOI: 10.4236/Ajmb.2012.21002  0.713
2010 Lee D, Ohn T, Chiang YC, Quigley G, Yao G, Liu Y, Denis CL. PUF3 acceleration of deadenylation in vivo can operate independently of CCR4 activity, possibly involving effects on the PAB1-mRNP structure. Journal of Molecular Biology. 399: 562-75. PMID 20435044 DOI: 10.1016/J.Jmb.2010.04.034  0.784
2009 Govindan M, Meng X, Denis CL, Webb P, Baxter JD, Walfish PG. Identification of CCR4 and other essential thyroid hormone receptor co-activators by modified yeast synthetic genetic array analysis. Proceedings of the National Academy of Sciences of the United States of America. 106: 19854-9. PMID 19903885 DOI: 10.1073/Pnas.0910134106  0.375
2008 Cui Y, Ramnarain DB, Chiang YC, Ding LH, McMahon JS, Denis CL. Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes. Molecular Genetics and Genomics : Mgg. 279: 323-37. PMID 18214544 DOI: 10.1007/S00438-007-0314-1  0.66
2007 Yao G, Chiang YC, Zhang C, Lee DJ, Laue TM, Denis CL. PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo. Molecular and Cellular Biology. 27: 6243-53. PMID 17620415 DOI: 10.1128/Mcb.00734-07  0.708
2007 Ohn T, Chiang YC, Lee DJ, Yao G, Zhang C, Denis CL. CAF1 plays an important role in mRNA deadenylation separate from its contact to CCR4. Nucleic Acids Research. 35: 3002-15. PMID 17439972 DOI: 10.1093/Nar/Gkm196  0.784
2005 Traven A, Hammet A, Tenis N, Denis CL, Heierhorst J. Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in Saccharomyces cerevisiae. Genetics. 169: 65-75. PMID 15466434 DOI: 10.1534/Genetics.104.030940  0.45
2004 Viswanathan P, Ohn T, Chiang YC, Chen J, Denis CL. Mouse CAF1 can function as a processive deadenylase/3'-5'-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal. The Journal of Biological Chemistry. 279: 23988-95. PMID 15044470 DOI: 10.1074/Jbc.M402803200  0.777
2004 Clark LB, Viswanathan P, Quigley G, Chiang YC, McMahon JS, Yao G, Chen J, Nelsbach A, Denis CL. Systematic mutagenesis of the leucine-rich repeat (LRR) domain of CCR4 reveals specific sites for binding to CAF1 and a separate critical role for the LRR in CCR4 deadenylase activity. The Journal of Biological Chemistry. 279: 13616-23. PMID 14734555 DOI: 10.1074/Jbc.M313202200  0.693
2003 Cui Y, Denis CL. In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization. Molecular and Cellular Biology. 23: 7887-901. PMID 14560031 DOI: 10.1128/Mcb.23.21.7887-7901.2003  0.645
2003 Denis CL, Chen J. The CCR4-NOT complex plays diverse roles in mRNA metabolism. Progress in Nucleic Acid Research and Molecular Biology. 73: 221-50. PMID 12882519 DOI: 10.1016/S0079-6603(03)01007-9  0.695
2003 Viswanathan P, Chen J, Chiang YC, Denis CL. Identification of multiple RNA features that influence CCR4 deadenylation activity. The Journal of Biological Chemistry. 278: 14949-55. PMID 12590136 DOI: 10.1074/Jbc.M211794200  0.61
2003 Denis CL, Chen J. The CCR4-NOT Complex Plays Diverse Roles in mRNA Metabolism Progress in Nucleic Acid Research and Molecular Biology. 73: 221-250. DOI: 10.1016/S0079-6603(03)01007-9  0.66
2002 Russell P, Benson JD, Denis CL. Characterization of mutations in NOT2 indicates that it plays an important role in maintaining the integrity of the CCR4-NOT complex. Journal of Molecular Biology. 322: 27-39. PMID 12215412 DOI: 10.1016/S0022-2836(02)00707-6  0.499
2002 Chen J, Chiang YC, Denis CL. CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. The Embo Journal. 21: 1414-26. PMID 11889047 DOI: 10.1093/Emboj/21.6.1414  0.71
2001 Chen J, Rappsilber J, Chiang YC, Russell P, Mann M, Denis CL. Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex. Journal of Molecular Biology. 314: 683-94. PMID 11733989 DOI: 10.1006/Jmbi.2001.5162  0.692
2001 Denis CL, Chiang YC, Cui Y, Chen J. Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation. Genetics. 158: 627-34. PMID 11404327  0.737
2001 Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell. 104: 377-86. PMID 11239395 DOI: 10.1016/S0092-8674(01)00225-2  0.711
2001 Liu HY, Chiang YC, Pan J, Chen J, Salvadore C, Audino DC, Badarinarayana V, Palaniswamy V, Anderson B, Denis CL. Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. The Journal of Biological Chemistry. 276: 7541-8. PMID 11113136 DOI: 10.1074/Jbc.M009112200  0.693
1999 Bai Y, Salvadore C, Chiang YC, Collart MA, Liu HY, Denis CL. The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Molecular and Cellular Biology. 19: 6642-51. PMID 10490603 DOI: 10.1128/Mcb.19.10.6642  0.687
1999 Chang M, French-Cornay D, Fan HY, Klein H, Denis CL, Jaehning JA. A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling Molecular and Cellular Biology. 19: 1056-1067. PMID 9891041 DOI: 10.1128/Mcb.19.2.1056  0.473
1998 Komarnitsky PB, Klebanow ER, Weil PA, Denis CL. ADR1-mediated transcriptional activation requires the presence of an intact TFIID complex. Molecular and Cellular Biology. 18: 5861-7. PMID 9742103 DOI: 10.1128/Mcb.18.10.5861  0.496
1998 Komarnitsky SI, Chiang YC, Luca FC, Chen J, Toyn JH, Winey M, Johnston LH, Denis CL. DBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein. Molecular and Cellular Biology. 18: 2100-7. PMID 9528782 DOI: 10.1128/Mcb.18.4.2100  0.666
1998 Hata H, Mitsui H, Liu H, Bai Y, Denis CL, Shimizu Y, Sakai A. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics. 148: 571-9. PMID 9504907  0.621
1998 Liu HY, Badarinarayana V, Audino DC, Rappsilber J, Mann M, Denis CL. The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively Embo Journal. 17: 1096-1106. PMID 9463387 DOI: 10.1093/Emboj/17.4.1096  0.533
1998 Verdone L, Cesari F, Denis CL, Di Mauro E, Caserta M. Factors affecting Saccharomyces cerevisiae ADH2 chromatin remodeling and transcription. The Journal of Biological Chemistry. 272: 30828-34. PMID 9388226 DOI: 10.1074/Jbc.272.49.30828  0.438
1997 Liu HY, Toyn JH, Chiang YC, Draper MP, Johnston LH, Denis CL. DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. The Embo Journal. 16: 5289-98. PMID 9311989 DOI: 10.1093/Emboj/16.17.5289  0.497
1997 Chiang YC, Komarnitsky P, Chase D, Denis CL. ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. The Journal of Biological Chemistry. 271: 32359-65. PMID 8943299 DOI: 10.1074/Jbc.271.50.32359  0.469
1995 Draper MP, Salvadore C, Denis CL. Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex. Molecular and Cellular Biology. 15: 3487-95. PMID 7791755 DOI: 10.1128/Mcb.15.7.3487  0.557
1995 Simon MM, Pavlik P, Hartig A, Binder M, Ruis H, Cook WJ, Denis CL, Schanz B. A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids. Molecular & General Genetics : Mgg. 249: 289-96. PMID 7500953 DOI: 10.1007/Bf00290529  0.443
1994 Cook WJ, Chase D, Audino DC, Denis CL. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Molecular and Cellular Biology. 14: 629-40. PMID 8264631 DOI: 10.1128/Mcb.14.1.629  0.458
1994 Draper MP, Liu HY, Nelsbach AH, Mosley SP, Denis CL. CCR4 is a glucose-regulated transcription factor whose leucine-rich repeat binds several proteins important for placing CCR4 in its proper promoter context. Molecular and Cellular Biology. 14: 4522-31. PMID 8007957 DOI: 10.1128/Mcb.14.7.4522  0.494
1992 Shain DH, Salvadore C, Denis CL. Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis Mgg Molecular &Amp; General Genetics. 232: 479-488. PMID 1588917 DOI: 10.1007/Bf00266253  0.336
1992 Vallari RC, Cook WJ, Audino DC, Morgan MJ, Jensen DE, Laudano AP, Denis CL. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Molecular and Cellular Biology. 12: 1663-73. PMID 1549119 DOI: 10.1128/Mcb.12.4.1663  0.47
1992 Denis CL, Fontaine SC, Chase D, Kemp BE, Bemis LT. ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Molecular and Cellular Biology. 12: 1507-14. PMID 1549108 DOI: 10.1128/Mcb.12.4.1507  0.399
1991 Denis CL, Audino DC. The CCR1 (SNF1) and SCH9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator ADR1 in controlling yeast ADH2 expression Mgg Molecular &Amp; General Genetics. 229: 395-399. PMID 1944227 DOI: 10.1007/Bf00267461  0.409
1989 Cherry JR, Denis CL. Overexpression of the yeast transcriptional activator ADR1 induces mutation of the mitochondrial genome Current Genetics. 15: 311-317. PMID 2676204 DOI: 10.1007/Bf00419910  0.361
1989 Bemis LT, Denis CL. Characterization of the adr1-1 nonsense mutation identifies the translational start of the yeast transcriptional activator ADR1 Yeast (Chichester, England). 5: 291-298. PMID 2675489 DOI: 10.1002/Yea.320050409  0.505
1989 Cherry JR, Johnson TR, Dollard C, Shuster JR, Denis CL. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell. 56: 409-19. PMID 2644045 DOI: 10.1016/0092-8674(89)90244-4  0.391
1988 Bemis LT, Denis CL. Identification of functional regions in the yeast transcriptional activator ADR1 Molecular and Cellular Biology. 8: 2125-2131. PMID 3290650 DOI: 10.1128/Mcb.8.5.2125  0.438
1987 Denis CL. The effects of ADR1 and CCR1 gene dosage on the regulation of the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae Mgg Molecular &Amp; General Genetics. 208: 101-106. PMID 3302603 DOI: 10.1007/Bf00330429  0.372
1986 Denis CL, Gallo C. Constitutive RNA synthesis for the yeast activator ADR1 and identification of the ADR1-5c mutation: implications in posttranslational control of ADR1 Molecular and Cellular Biology. 6: 4026-4030. PMID 3540604 DOI: 10.1128/MCB.6.11.4026  0.392
1983 Denis CL, Young ET. Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae Molecular and Cellular Biology. 3: 360-370. PMID 6341814  0.489
1983 Denis CL, Ferguson J, Young ET. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease Journal of Biological Chemistry. 258: 1165-1171. PMID 6337132  0.51
1981 Denis CL, Ciriacy M, Young ET. A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae Journal of Molecular Biology. 148: 355-368. PMID 7031263 DOI: 10.1016/0022-2836(81)90181-9  0.61
Low-probability matches (unlikely to be authored by this person)
1993 Cook WJ, Denis CL. Identification of three genes required for the glucose-dependent transciption of the yeast transcriptional activator ADR1 Current Genetics. 23: 192-200. PMID 8435848 DOI: 10.1007/BF00351495  0.3
1987 Denis CL, Drouin EE. Meiotic instability of tandemly iterated plasmid sequences in the yeast chromosome Current Genetics. 12: 399-403. PMID 3329054 DOI: 10.1007/Bf00434816  0.277
2016 Xi W, Wang X, Laue TM, Denis CL. Multiple discrete soluble aggregates influence polyglutamine toxicity in a Huntington's disease model system. Scientific Reports. 6: 34916. PMID 27721444 DOI: 10.1038/Srep34916  0.249
Hide low-probability matches.