Dana M. Spence - Publications

Affiliations: 
Chemistry - Doctor of Philosophy Michigan State University, East Lansing, MI 
Area:
Biochemistry

65 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Hayter EA, Azibere S, Skrajewski LA, Soule LD, Spence DM, Martin RS. A 3D-printed, multi-modal microfluidic device for measuring nitric oxide and ATP release from flowing red blood cells. Analytical Methods : Advancing Methods and Applications. PMID 35959771 DOI: 10.1039/d2ay00931e  0.386
2022 Liu Y, Hesse LE, Geiger MK, Zinn KR, McMahon TJ, Chen C, Spence DM. A 3D-printed transfusion platform reveals beneficial effects of normoglycemic erythrocyte storage solutions and a novel rejuvenating solution. Lab On a Chip. PMID 35258064 DOI: 10.1039/d2lc00030j  0.345
2020 Jacobs MJ, Pinger CW, Castiaux AD, Maloney KJ, Spence DM. A novel 3D-printed centrifugal ultrafiltration method reveals in vivo glycation of human serum albumin decreases its binding affinity for zinc. Metallomics : Integrated Biometal Science. PMID 32626857 DOI: 10.1039/D0Mt00123F  0.306
2020 Geiger M, Zinn K, Spence D. Investigating the Binding of Albumin and C‐peptide to Red Blood Cells The Faseb Journal. 34: 1-1. DOI: 10.1096/Fasebj.2020.34.S1.05337  0.324
2019 Castiaux AD, Spence DM, Martin RS. Review of 3D Cell Culture with Analysis in Microfluidic Systems. Analytical Methods : Advancing Methods and Applications. 11: 4220-4232. PMID 32051693 DOI: 10.1039/C9Ay01328H  0.328
2019 Castiaux AD, Pinger C, Hayter EA, Bunn ME, Martin RS, Spence DM. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports. Analytical Chemistry. PMID 31035747 DOI: 10.1021/Acs.Analchem.9B01302  0.36
2018 Heller AA, Lockwood SY, Janes TM, Spence DM. Technologies for Measuring Pharmacokinetic Profiles. Annual Review of Analytical Chemistry (Palo Alto, Calif.). PMID 29324183 DOI: 10.1146/Annurev-Anchem-061417-125611  0.724
2018 Janes T, Spence DM. Steroid inhibition of erythrocyte-derived ATP reduces endothelial cell production of nitric oxide in a 3D-printed fluidic model Analytical Methods. 10: 3416-3422. DOI: 10.1039/C8Ay00870A  0.377
2018 Pinger CW, Castiaux A, Speed S, Spence DM. Plate Reader Compatible 3D-Printed Device for Teaching Equilibrium Dialysis Binding Assays Journal of Chemical Education. 95: 1662-1667. DOI: 10.1021/Acs.Jchemed.8B00215  0.316
2017 Pinger C, Heller A, Spence DM. A Printed Equilibrium-Dialysis Device with Integrated Membranes for Improved Binding Affinity Measurements. Analytical Chemistry. PMID 28648046 DOI: 10.1021/Acs.Analchem.7B01848  0.331
2017 Gross B, Lockwood SY, Spence DM. Recent Advances in Analytical Chemistry by 3D Printing. Analytical Chemistry. 89: 57-70. PMID 28105825 DOI: 10.1021/Acs.Analchem.6B04344  0.71
2016 Chen C, Mehl BT, Munshi AS, Townsend AD, Spence DM, Martin RS. 3D-printed Microfluidic Devices: Fabrication, Advantages and Limitations-a Mini Review. Analytical Methods : Advancing Methods and Applications. 8: 6005-6012. PMID 27617038 DOI: 10.1039/C6Ay01671E  0.332
2016 Lockwood SY, Summers S, Eggenberger E, Spence DM. An In Vitro Diagnostic for Multiple Sclerosis Based on C-peptide Binding to Erythrocytes. Ebiomedicine. PMID 27528268 DOI: 10.1016/J.Ebiom.2016.07.036  0.733
2016 LaBonia GJ, Lockwood SY, Heller AA, Spence DM, Hummon AB. Drug penetration and metabolism in 3-dimensional cell cultures treated in a 3D printed fluidic device: Assessment of irinotecan via MALDI imaging mass spectrometry. Proteomics. PMID 27198560 DOI: 10.1002/Pmic.201500524  0.749
2016 Lockwood SY, Meisel JE, Monsma FJ, Spence DM. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules. Analytical Chemistry. PMID 26727249 DOI: 10.1021/Acs.Analchem.5B04270  0.756
2016 Mu R, Chen C, Wang Y, Spence DM. A quantitative, in vitro appraisal of experimental low-glucose storage solutions used for blood banking Analytical Methods. 8: 6856-6864. DOI: 10.1039/C6Ay02128J  0.338
2015 Gross BC, Anderson KB, Meisel JE, McNitt MI, Spence DM. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis. Analytical Chemistry. 87: 6335-41. PMID 25973637 DOI: 10.1021/Acs.Analchem.5B01202  0.639
2015 Liu Y, Chen C, Summers S, Medawala W, Spence DM. C-peptide and zinc delivery to erythrocytes requires the presence of albumin: implications in diabetes explored with a 3D-printed fluidic device. Integrative Biology : Quantitative Biosciences From Nano to Macro. 7: 534-43. PMID 25825241 DOI: 10.1039/C4Ib00243A  0.346
2014 Selimovic A, Erkal JL, Spence DM, Martin RS. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release. The Analyst. 139: 5686-94. PMID 25105251 DOI: 10.1039/C4An01062K  0.409
2014 Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL, McNamara S, Martin RS, Spence DM. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab On a Chip. 14: 2023-32. PMID 24763966 DOI: 10.1039/C4Lc00171K  0.757
2014 Chen C, Wang Y, Lockwood SY, Spence DM. 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. The Analyst. 139: 3219-26. PMID 24660218 DOI: 10.1039/C3An02357E  0.754
2014 Lockwood SY, Erkal JL, Spence DM. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea. Nitric Oxide : Biology and Chemistry / Official Journal of the Nitric Oxide Society. 38: 1-7. PMID 24530476 DOI: 10.1016/J.Niox.2014.02.003  0.809
2014 Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry. 86: 3240-53. PMID 24432804 DOI: 10.1021/Ac403397R  0.711
2014 Wang Y, Giebink A, Spence DM. Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking. Integrative Biology : Quantitative Biosciences From Nano to Macro. 6: 65-75. PMID 24292633 DOI: 10.1039/C3Ib40187A  0.788
2013 Anderson KB, Lockwood SY, Martin RS, Spence DM. A 3D printed fluidic device that enables integrated features. Analytical Chemistry. 85: 5622-6. PMID 23687961 DOI: 10.1021/Ac4009594  0.791
2013 Anderson KB, Halpin ST, Johnson AS, Martin RS, Spence DM. Integration of multiple components in polystyrene-based microfluidic devices part II: cellular analysis. The Analyst. 138: 137-43. PMID 23120748 DOI: 10.1039/C2An36171J  0.816
2013 Johnson AS, Anderson KB, Halpin ST, Kirkpatrick DC, Spence DM, Martin RS. Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization. The Analyst. 138: 129-36. PMID 23120747 DOI: 10.1039/C2An36168J  0.783
2013 Giebink AW, Vogel PA, Medawala W, Spence DM. C-peptide-stimulated nitric oxide production in a cultured pulmonary artery endothelium is erythrocyte mediated and requires Zn(2+). Diabetes/Metabolism Research and Reviews. 29: 44-52. PMID 23007928 DOI: 10.1002/Dmrr.2359  0.768
2012 Anderson KB, Karunarathne W, Spence DM. Measuring P2X1 receptor activity in washed platelets in the absence of exogenous apyrase Analytical Methods. 4: 101-105. DOI: 10.1039/C1Ay05530E  0.783
2011 Vogel PA, Halpin ST, Martin RS, Spence DM. Microfluidic transendothelial electrical resistance measurement device that enables blood flow and postgrowth experiments. Analytical Chemistry. 83: 4296-301. PMID 21513343 DOI: 10.1021/Ac2004746  0.771
2010 Halpin ST, Spence DM. Direct plate-reader measurement of nitric oxide released from hypoxic erythrocytes flowing through a microfluidic device. Analytical Chemistry. 82: 7492-7. PMID 20681630 DOI: 10.1021/Ac101130S  0.785
2010 Raththagala M, Karunarathne W, Kryziniak M, McCracken J, Spence DM. Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production European Journal of Pharmacology. 645: 32-38. PMID 20655902 DOI: 10.1016/J.Ejphar.2010.07.012  0.81
2010 Letourneau S, Hernandez L, Faris AN, Spence DM. Evaluating the effects of estradiol on endothelial nitric oxide stimulated by erythrocyte-derived ATP using a microfluidic approach. Analytical and Bioanalytical Chemistry. 397: 3369-75. PMID 20393839 DOI: 10.1007/S00216-010-3687-7  0.811
2010 Keltner Z, Meyer JA, Johnson EM, Palumbo AM, Spence DM, Reid GE. Mass spectrometric characterization and activity of zinc-activated proinsulin C-peptide and C-peptide mutants. The Analyst. 135: 278-88. PMID 20098759 DOI: 10.1039/B917600D  0.516
2010 Tolan NV, Meyer JA, Ku CJ, Karunarathne W, Spence DM. Use of the red blood cell as a simple drug target and diagnostic by manipulating and monitoring its ability to release adenosine triphosphate (ATP) Pure and Applied Chemistry. 82: 1623-1634. DOI: 10.1351/Pac-Con-10-02-10  0.793
2009 Medawala W, McCahill P, Giebink A, Meyer J, Ku CJ, Spence DM. A Molecular Level Understanding of Zinc Activation of C-peptide and its Effects on Cellular Communication in the Bloodstream. The Review of Diabetic Studies : Rds. 6: 148-58. PMID 20039004 DOI: 10.1900/RDS.2009.6.148  0.778
2009 Karunarathne W, Ku CJ, Spence DM. The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist. Integrative Biology : Quantitative Biosciences From Nano to Macro. 1: 655-63. PMID 20027374 DOI: 10.1039/B909873A  0.67
2009 Meyer JA, Subasinghe W, Sima AA, Keltner Z, Reid GE, Daleke D, Spence DM. Zinc-activated C-peptide resistance to the type 2 diabetic erythrocyte is associated with hyperglycemia-induced phosphatidylserine externalization and reversed by metformin. Molecular Biosystems. 5: 1157-62. PMID 19756305 DOI: 10.1039/B908241G  0.543
2009 Tolan NV, Genes LI, Subasinghe W, Raththagala M, Spence DM. Personalized metabolic assessment of erythrocytes using microfluidic delivery to an array of luminescent wells. Analytical Chemistry. 81: 3102-8. PMID 19301907 DOI: 10.1021/Ac900084G  0.808
2009 Oblak TD, Meyer JA, Spence DM. A microfluidic technique for monitoring bloodstream analytes indicative of C-peptide resistance in type 2 diabetes. The Analyst. 134: 188-93. PMID 19082192 DOI: 10.1039/B816740K  0.581
2008 Tolan NV, Genes LI, Spence DM. Merging Microfluidics with Micro-titre Technology for More Efficient Drug Discovery. Jala (Charlottesville, Va.). 13: 275-279. PMID 21113418 DOI: 10.1016/J.Jala.2008.05.002  0.713
2008 Ku CJ, D'Amico Oblak T, Spence DM. Interactions between multiple cell types in parallel microfluidic channels: monitoring platelet adhesion to an endothelium in the presence of an anti-adhesion drug. Analytical Chemistry. 80: 7543-8. PMID 18729474 DOI: 10.1021/Ac801114J  0.779
2008 Subasinghe W, Spence DM. Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes. Analytica Chimica Acta. 618: 227-33. PMID 18513544 DOI: 10.1016/J.Aca.2008.04.061  0.473
2008 Faris A, Spence DM. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes. The Analyst. 133: 678-82. PMID 18427692 DOI: 10.1039/B719990B  0.79
2008 Meyer JA, Froelich JM, Reid GE, Karunarathne WK, Spence DM. Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter. Diabetologia. 51: 175-82. PMID 17965850 DOI: 10.1007/S00125-007-0853-3  0.801
2007 Hulvey MK, Genes LI, Spence DM, Martin RS. Fabrication and evaluation of a 3-dimensional microchip device where carbon microelectrodes individually address channels in the separate fluidic layers. The Analyst. 132: 1246-53. PMID 18318286 DOI: 10.1039/B711148G  0.373
2007 Genes LI, V Tolan N, Hulvey MK, Martin RS, Spence DM. Addressing a vascular endothelium array with blood components using underlying microfluidic channels. Lab On a Chip. 7: 1256-9. PMID 17896007 DOI: 10.1039/B712619K  0.373
2007 Carroll JS, Ku CJ, Karunarathne W, Spence DM. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream. Analytical Chemistry. 79: 5133-8. PMID 17580956 DOI: 10.1021/Ac0706271  0.818
2007 Ku CJ, Karunarathne W, Kenyon S, Root P, Spence D. Fluorescence determination of nitric oxide production in stimulated and activated platelets. Analytical Chemistry. 79: 2421-6. PMID 17288406 DOI: 10.1021/Ac061572Q  0.8
2006 Raththagala M, Root PD, Spence DM. Dynamic monitoring of glutathione in erythrocytes, without a separation step, in the presence of an oxidant insult. Analytical Chemistry. 78: 8556-60. PMID 17165853 DOI: 10.1021/Ac061163U  0.776
2006 Martin RS, Root PD, Spence DM. Microfluidic technologies as platforms for performing quantitative cellular analyses in an in vitro environment. The Analyst. 131: 1197-206. PMID 17066186 DOI: 10.1039/B611041J  0.352
2006 Carroll J, Raththagala M, Subasinghe W, Baguzis S, D'amico Oblak T, Root P, Spence D. An altered oxidant defense system in red blood cells affects their ability to release nitric oxide-stimulating ATP. Molecular Biosystems. 2: 305-11. PMID 16880949 DOI: 10.1039/B604362N  0.777
2006 D'Amico Oblak T, Root P, Spence DM. Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device. Analytical Chemistry. 78: 3193-7. PMID 16643013 DOI: 10.1021/Ac052066O  0.791
2006 Price AK, Martin RS, Spence DM. Monitoring erythrocytes in a microchip channel that narrows uniformly: towards an improved microfluidic-based mimic of the microcirculation. Journal of Chromatography. A. 1111: 220-7. PMID 16569581 DOI: 10.1016/J.Chroma.2005.07.083  0.407
2006 Spence DM, Meyer JA. Release of Erythrocyte-Derived ATP, a Recognized Stimulus of Nitric Oxide Production, Is Increased upon Incubation of Erythrocytes with C-Peptide. Blood. 108: 1567-1567. DOI: 10.1182/Blood.V108.11.1567.1567  0.458
2005 SPENCE D. Automation and Microfluidic Assays: In Vitro Models of the Mammalian Microcirculation Journal of the Association For Laboratory Automation. 10: 270-275. DOI: 10.1016/J.Jala.2005.06.006  0.3
2005 Li MW, Spence DM, Martin RS. A microchip-based system for immobilizing PC 12 cells and amperometrically detecting catecholamines released after stimulation with calcium Electroanalysis. 17: 1171-1180. DOI: 10.1002/Elan.200403231  0.381
2004 Spence DM, Torrence NJ, Kovarik ML, Martin RS. Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. The Analyst. 129: 995-1000. PMID 15508026 DOI: 10.1039/B410547H  0.408
2004 Price AK, Fischer DJ, Martin RS, Spence DM. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels. Analytical Chemistry. 76: 4849-55. PMID 15307797 DOI: 10.1021/Ac0495992  0.419
2003 Fischer DJ, Torrence NJ, Sprung RJ, Spence DM. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo. The Analyst. 128: 1163-8. PMID 14529024 DOI: 10.1039/B308225N  0.34
2003 Gordito MP, Kotsis DH, Minteer SD, Spence DM. Flow-based amperometric detection of dopamine in an immobilized cell reactor. Journal of Neuroscience Methods. 124: 129-34. PMID 12706842 DOI: 10.1016/S0165-0270(02)00383-7  0.345
2003 Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ. Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. American Journal of Physiology. Heart and Circulatory Physiology. 285: H693-700. PMID 12689860 DOI: 10.1152/Ajpheart.01026.2002  0.39
2003 Kotsis DH, Spence DM. Detection of ATP-induced nitric oxide in a biomimetic circulatory vessel containing an immobilized endothelium. Analytical Chemistry. 75: 145-51. PMID 12530831 DOI: 10.1021/Ac0258249  0.442
2002 Sprung R, Sprague R, Spence D. Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo. Analytical Chemistry. 74: 2274-8. PMID 12038751 DOI: 10.1021/Ac011144E  0.427
2001 Edwards J, Sprung R, Sprague R, Spence D. Chemiluminescence detection of ATP release from red blood cells upon passage through microbore tubing. The Analyst. 126: 1257-60. PMID 11534589 DOI: 10.1039/B100519G  0.469
Show low-probability matches.