Ross D. King - Publications

Affiliations: 
Computer Sciences University of Wales, Lampeter, Wales, United Kingdom 

60 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Grinberg NF, Orhobor OI, King RD. An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat. Machine Learning. 109: 251-277. PMID 32174648 DOI: 10.1007/S10994-019-05848-5  0.384
2019 Sadawi N, Olier I, Vanschoren J, van Rijn JN, Besnard J, Bickerton R, Grosan C, Soldatova L, King RD. Multi-task learning with a natural metric for quantitative structure activity relationship learning Journal of Cheminformatics. 11. DOI: 10.1186/S13321-019-0392-1  0.336
2018 Olier I, Sadawi N, Bickerton GR, Vanschoren J, Grosan C, Soldatova L, King RD. Meta-QSAR: a large-scale application of meta-learning to drug design and discovery. Machine Learning. 107: 285-311. PMID 31997851 DOI: 10.1007/S10994-017-5685-X  0.327
2017 Currin A, Korovin K, Ababi M, Roper K, Kell DB, Day PJ, King RD. Computing exponentially faster: implementing a non-deterministic universal Turing machine using DNA. Journal of the Royal Society, Interface. 14. PMID 28250099 DOI: 10.1098/Rsif.2016.0990  0.301
2015 Williams K, Bilsland E, Sparkes A, Aubrey W, Young M, Soldatova LN, De Grave K, Ramon J, de Clare M, Sirawaraporn W, Oliver SG, King RD. Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. Journal of the Royal Society, Interface / the Royal Society. 12: 20141289. PMID 25652463 DOI: 10.1098/Rsif.2014.1289  0.32
2014 Soldatova LN, Nadis D, King RD, Basu PS, Haddi E, Baumlé V, Saunders NJ, Marwan W, Rudkin BB. EXACT2: the semantics of biomedical protocols. Bmc Bioinformatics. 15: S5. PMID 25472549 DOI: 10.1186/1471-2105-15-S14-S5  0.313
2014 Zhou F, Toivonen H, King RD. The use of weighted graphs for large-scale genome analysis. Plos One. 9: e89618. PMID 24619061 DOI: 10.1371/Journal.Pone.0089618  0.3
2013 Scott IM, Lin W, Liakata M, Wood JE, Vermeer CP, Allaway D, Ward JL, Draper J, Beale MH, Corol DI, Baker JM, King RD. Merits of random forests emerge in evaluation of chemometric classifiers by external validation. Analytica Chimica Acta. 801: 22-33. PMID 24139571 DOI: 10.1016/J.Aca.2013.09.027  0.311
2013 Soldatova LN, Rzhetsky A, De Grave K, King RD. Representation of probabilistic scientific knowledge. Journal of Biomedical Semantics. 4: S7. PMID 23734675 DOI: 10.1186/2041-1480-4-S1-S7  0.369
2011 Whelan K, Ray O, King RD. Representation, simulation, and hypothesis generation in graph and logical models of biological networks. Methods in Molecular Biology (Clifton, N.J.). 759: 465-82. PMID 21863503 DOI: 10.1007/978-1-61779-173-4_26  0.333
2011 King RD. Rise of the robo scientists. Scientific American. 304: 72-7. PMID 21265330 DOI: 10.1038/Scientificamerican0111-72  0.304
2010 Scott IM, Vermeer CP, Liakata M, Corol DI, Ward JL, Lin W, Johnson HE, Whitehead L, Kular B, Baker JM, Walsh S, Dave A, Larson TR, Graham IA, Wang TL, ... King RD, et al. Enhancement of plant metabolite fingerprinting by machine learning. Plant Physiology. 153: 1506-20. PMID 20566707 DOI: 10.1104/Pp.109.150524  0.335
2010 Qi D, King RD, Hopkins AL, Bickerton GR, Soldatova LN. An ontology for description of drug discovery investigations. Journal of Integrative Bioinformatics. 7. PMID 20375446 DOI: 10.2390/Biecoll-Jib-2010-126  0.301
2010 Sparkes A, Aubrey W, Byrne E, Clare A, Khan MN, Liakata M, Markham M, Rowland J, Soldatova LN, Whelan KE, Young M, King RD. Towards Robot Scientists for autonomous scientific discovery. Automated Experimentation. 2: 1. PMID 20119518 DOI: 10.1186/1759-4499-2-1  0.322
2009 King RD, Rowland J, Oliver SG, Young M, Aubrey W, Byrne E, Liakata M, Markham M, Pir P, Soldatova LN, Sparkes A, Whelan KE, Clare A. The automation of science. Science (New York, N.Y.). 324: 85-9. PMID 19342587 DOI: 10.1126/Science.1165620  0.353
2008 Whelan KE, King RD. Using a logical model to predict the growth of yeast. Bmc Bioinformatics. 9: 97. PMID 18269749 DOI: 10.1186/1471-2105-9-97  0.344
2008 Coghill GM, Srinivasan A, King RD. Qualitative system identification from imperfect data Journal of Artificial Intelligence Research. 32: 825-877. DOI: 10.1613/Jair.2374  0.34
2008 Srinivasan A, King RD. Incremental Identification of Qualitative Models of Biological Systems using Inductive Logic Programming Journal of Machine Learning Research. 9: 1475-1533. DOI: 10.1145/1390681.1442781  0.336
2007 Buttingsrud B, King RD, Alsberg BK. An alignment-free methodology for modelling field-based 3D-structure activity relationships using inductive logic programming Journal of Chemometrics. 21: 509-519. DOI: 10.1002/Cem.1056  0.395
2006 Buttingsrud B, Ryeng E, King RD, Alsberg BK. Representation of molecular structure using quantum topology with inductive logic programming in structure-activity relationships. Journal of Computer-Aided Molecular Design. 20: 361-73. PMID 17054018 DOI: 10.1007/S10822-006-9058-Y  0.348
2006 Ferré S, King RD. Finding motifs in protein secondary structure for use in function prediction. Journal of Computational Biology : a Journal of Computational Molecular Cell Biology. 13: 719-31. PMID 16706721 DOI: 10.1089/Cmb.2006.13.719  0.376
2006 Clare A, Karwath A, Ougham H, King RD. Functional bioinformatics for Arabidopsis thaliana. Bioinformatics (Oxford, England). 22: 1130-6. PMID 16481336 DOI: 10.1093/Bioinformatics/Btl169  0.391
2005 King RD, Garrett SM, Coghill GM. On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics (Oxford, England). 21: 2017-26. PMID 15647297 DOI: 10.1093/Bioinformatics/Bti255  0.351
2004 Whelan KE, King RD. Intelligent software for laboratory automation. Trends in Biotechnology. 22: 440-5. PMID 15331223 DOI: 10.1016/J.Tibtech.2004.07.010  0.314
2004 King RD, Wise PH, Clare A. Confirmation of data mining based predictions of protein function. Bioinformatics (Oxford, England). 20: 1110-8. PMID 14764546 DOI: 10.1093/Bioinformatics/Bth047  0.398
2004 King RD, Whelan KE, Jones FM, Reiser PG, Bryant CH, Muggleton SH, Kell DB, Oliver SG. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature. 427: 247-52. PMID 14724639 DOI: 10.1038/Nature02236  0.335
2004 King RD. Applying inductive logic programming to predicting gene function Ai Magazine. 25: 57-68. DOI: 10.1609/Aimag.V25I1.1747  0.411
2003 Toivonen H, Srinivasan A, King RD, Kramer S, Helma C. Statistical evaluation of the Predictive Toxicology Challenge 2000-2001. Bioinformatics (Oxford, England). 19: 1183-93. PMID 12835260 DOI: 10.1093/Bioinformatics/Btg130  0.373
2002 Karwath A, King RD. Homology induction: the use of machine learning to improve sequence similarity searches. Bmc Bioinformatics. 3: 11. PMID 11972320 DOI: 10.1186/1471-2105-3-11  0.372
2002 Clare A, King RD. Machine learning of functional class from phenotype data. Bioinformatics (Oxford, England). 18: 160-6. PMID 11836224 DOI: 10.1093/Bioinformatics/18.1.160  0.39
2002 Marchand-Geneste N, Watson KA, Alsberg BK, King RD. New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase B inhibitors. Journal of Medicinal Chemistry. 45: 399-409. PMID 11784144 DOI: 10.1021/Jm0155244  0.38
2001 King RD, Karwath A, Clare A, Dehaspe L. The utility of different representations of protein sequence for predicting functional class. Bioinformatics (Oxford, England). 17: 445-54. PMID 11331239 DOI: 10.1093/Bioinformatics/17.5.445  0.372
2001 King RD, Srinivasan A, Dehaspe L. Warmr: a data mining tool for chemical data. Journal of Computer-Aided Molecular Design. 15: 173-81. PMID 11272703 DOI: 10.1023/A:1008171016861  0.388
2001 Helma C, King RD, Kramer S, Srinivasan A. The predictive toxicology challenge 2000-2001 Bioinformatics. 17: 107-108. DOI: 10.1093/Bioinformatics/17.1.107  0.342
2000 King RD, Karwath A, Clare A, Dehaspe L. Accurate prediction of protein functional class from sequence in the Mycobacterium tuberculosis and Escherichia coli genomes using data mining. Yeast (Chichester, England). 17: 283-93. PMID 11119305 DOI: 10.1002/1097-0061(200012)17:4<283::Aid-Yea52>3.0.Co;2-F  0.365
2000 Ouali M, King RD. Cascaded multiple classifiers for secondary structure prediction. Protein Science : a Publication of the Protein Society. 9: 1162-76. PMID 10892809 DOI: 10.1110/Ps.9.6.1162  0.374
2000 King RD, Ouali M, Strong AT, Aly A, Elmaghraby A, Kantardzic M, Page D. Is it better to combine predictions? Protein Engineering. 13: 15-9. PMID 10679525 DOI: 10.1093/Protein/13.1.15  0.363
2000 Kell DB, King RD. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning. Trends in Biotechnology. 18: 93-8. PMID 10675895 DOI: 10.1016/S0167-7799(99)01407-9  0.347
2000 Alsberg BK, Marchand-Geneste N, King RD. A new 3D molecular structure representation using quantum topology with application to structure–property relationships Chemometrics and Intelligent Laboratory Systems. 54: 75-91. DOI: 10.1016/S0169-7439(00)00101-5  0.347
1999 Srinivasan A, King RD. Feature construction with Inductive Logic Programming: A Study of Quantitative Predictions of Biological Activity Aided by Structural Attributes Data Mining and Knowledge Discovery. 3: 37-57. DOI: 10.1023/A:1009815821645  0.371
1998 King RD. Drug design, protein secondary structure prediction and functional genomics Acm Sigbio Newsletter. 18: 5-5. DOI: 10.1145/956034.956040  0.376
1997 King RD, Srinivasan A. The discovery of indicator variables for QSAR using inductive logic programming. Journal of Computer-Aided Molecular Design. 11: 571-80. PMID 9491349 DOI: 10.1023/A:1007967728701  0.362
1997 King RD, Saqi M, Sayle R, Sternberg MJ. DSC: public domain protein secondary structure predication. Computer Applications in the Biosciences : Cabios. 13: 473-4. PMID 9283763 DOI: 10.1093/Bioinformatics/13.4.473  0.359
1996 King RD, Srinivasan A. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environmental Health Perspectives. 104: 1031-40. PMID 8933051 DOI: 10.1289/Ehp.96104S51031  0.391
1996 King RD, Sternberg MJ. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Science : a Publication of the Protein Society. 5: 2298-310. PMID 8931148 DOI: 10.1002/Pro.5560051116  0.38
1996 King RD, Muggleton SH, Srinivasan A, Sternberg MJ. Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proceedings of the National Academy of Sciences of the United States of America. 93: 438-42. PMID 8552655 DOI: 10.1073/Pnas.93.1.438  0.363
1996 Srinivasan A, Muggleton SH, Sternberg MJE, King RD. Theories for mutagenicity: a study in first-order and feature-based induction Artificial Intelligence. 85: 277-299. DOI: 10.1016/0004-3702(95)00122-0  0.364
1995 King RD, Feng C, Sutherland A. Statlog: Comparison Of Classification Algorithms On Large Real-World Problems Applied Artificial Intelligence. 9: 289-333. DOI: 10.1080/08839519508945477  0.305
1995 King RD, Hirst JD, Sternberg MJE. Comparison of artificial intelligence methods for modeling pharmaceutical QSARS Applied Artificial Intelligence. 9: 213-233. DOI: 10.1080/08839519508945474  0.381
1995 King RD, Sternberg MJE, Srinivasan A. Relating chemical activity to structure: An examination of ILP successes New Generation Computing. 13: 411-433. DOI: 10.1007/Bf03037220  0.37
1994 Hirst JD, King RD, Sternberg MJ. Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines. Journal of Computer-Aided Molecular Design. 8: 405-20. PMID 7815092 DOI: 10.1007/Bf00125375  0.352
1994 Sternberg MJ, King RD, Lewis RA, Muggleton S. Application of machine learning to structural molecular biology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 344: 365-71. PMID 7800706 DOI: 10.1098/Rstb.1994.0075  0.415
1994 King RD, Clark DA, Shirazi J, Sternberg MJ. On the use of machine learning to identify topological rules in the packing of beta-strands. Protein Engineering. 7: 1295-303. PMID 7700861 DOI: 10.1093/Protein/7.11.1295  0.32
1994 Bratko I, King R. Applications of inductive logic programming Intelligence\/Sigart Bulletin. 5: 43-49. DOI: 10.1145/181668.181678  0.334
1993 King RD, Hirst JD, Sternberg MJE. New approaches to QSAR: Neural networks and machine learning Perspectives in Drug Discovery and Design. 1: 279-290. DOI: 10.1007/Bf02174529  0.33
1992 Schulze-Kremer S, King RD. IPSA-Inductive Protein Structure Analysis. Protein Engineering. 5: 377-90. PMID 1518785 DOI: 10.1093/Protein/5.5.377  0.333
1992 Muggleton S, King RD, Sternberg MJ. Protein secondary structure prediction using logic-based machine learning. Protein Engineering. 5: 647-57. PMID 1480619 DOI: 10.1093/Protein/5.7.647  0.398
1992 King RD, Muggleton S, Lewis RA, Sternberg MJ. Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proceedings of the National Academy of Sciences of the United States of America. 89: 11322-6. PMID 1454814 DOI: 10.1073/Pnas.89.23.11322  0.381
1992 Sternberg MJ, Lewis RA, King RD, Muggleton S. Modelling the structure and function of enzymes by machine learning. Faraday Discussions. 269-80. PMID 1290938 DOI: 10.1039/Fd9929300269  0.406
1990 King RD, Sternberg MJ. Machine learning approach for the prediction of protein secondary structure. Journal of Molecular Biology. 216: 441-57. PMID 2254939 DOI: 10.1016/S0022-2836(05)80333-X  0.364
Show low-probability matches.