Year |
Citation |
Score |
2024 |
Bhattacharjee R, Jervis H, McCormack ME, Petrukhina MA, Kertesz M. Structure and Bonding in π-Stacked Perylenes: The Impact of Charge on Pancake Bonding. Journal of the American Chemical Society. 146: 10465-10477. PMID 38579247 DOI: 10.1021/jacs.3c14065 |
0.317 |
|
2020 |
Grover G, Peters GM, Tovar JD, Kertesz M. Quinonoid vs. aromatic structures of heteroconjugated polymers from oligomer calculations. Physical Chemistry Chemical Physics : Pccp. PMID 32386288 DOI: 10.1039/D0Cp00606H |
0.356 |
|
2020 |
Lischka H, Shepard R, Müller T, Szalay PG, Pitzer RM, Aquino AJA, Araújo do Nascimento MM, Barbatti M, Belcher LT, Blaudeau JP, Borges I, Brozell SR, Carter EA, Das A, Gidofalvi G, ... ... Kertesz M, et al. The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. The Journal of Chemical Physics. 152: 134110. PMID 32268762 DOI: 10.1063/1.5144267 |
0.367 |
|
2020 |
Peters GM, Grover G, Maust RL, Colwell CE, Bates H, Edgell WA, Jasti R, Kertesz M, Tovar JD. Linear and radial conjugation in extended pi-electron systems. Journal of the American Chemical Society. PMID 31934753 DOI: 10.1021/Jacs.9B10785 |
0.334 |
|
2018 |
Kertesz M. Pancake bonding, an unusual pi-stacking interaction. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 29972608 DOI: 10.1002/Chem.201802385 |
0.425 |
|
2018 |
Qiu L, Alvarez MP, Baonza V, Corallo MT, Casado J, Kertesz M. Mechanochemistry in [6]cyclo-para-phenylene. A combined Raman spectroscopy and density functional theory study. Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry. PMID 29700956 DOI: 10.1002/Cphc.201800319 |
0.302 |
|
2018 |
Molcanov K, Mou Z, Kertesz M, Kojic-Prodic B, Stalke D, Demeshko S, Santic A, Stilinovic V. Two-electron / multicentre - pancake bonding in π-stacked trimers in a salt of tetrachloroquinone anion. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 29624761 DOI: 10.1002/Chem.201800672 |
0.427 |
|
2018 |
Solomek T, Ravat P, Mou Z, Kertesz M, Juricek M. Cethrene: The Chameleon of Woodward-Hoffmann Rules. The Journal of Organic Chemistry. PMID 29554426 DOI: 10.1021/Acs.Joc.8B00656 |
0.335 |
|
2018 |
Mou Z, Kertesz M. σ- versus π-dimerization modes of triangulene. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 29356223 DOI: 10.1002/Chem.201705763 |
0.432 |
|
2018 |
Molčanov K, Jelsch C, Wenger E, Mou Z, Kertesz M, Landeros-Rivera B, Hernandez-Trujillo J, Stilinović V, Kojić-Prodić B. Multicentric two-electron covalent bonding (pancake bonding) between semiquinone radicals determines bulk properties Acta Crystallographica Section a Foundations and Advances. 74: e80-e80. DOI: 10.1107/S2053273318094019 |
0.439 |
|
2017 |
Safko TM, Kertesz M, Weiss RG. Photophysics of N,N-dimethyl-3-(1-indolyl)propan-1-ammonium chloride and related derivatives. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society For Photobiology. PMID 28876020 DOI: 10.1039/C7Pp00199A |
0.37 |
|
2017 |
Mou Z, Tian YH, Kertesz M. Validation of density functionals for pancake-bonded π-dimers; dispersion is not enough. Physical Chemistry Chemical Physics : Pccp. PMID 28868555 DOI: 10.1039/C7Cp04637E |
0.624 |
|
2017 |
Mou Z, Kertesz M. Pancake bond orders: A study of a series of triangulenes. Angewandte Chemie (International Ed. in English). PMID 28580589 DOI: 10.1002/Anie.201704941 |
0.42 |
|
2017 |
Takamuku S, Nakano M, Kertesz M. Intramolecular Pancake-bonding in Helical Structures. Chemistry (Weinheim An Der Bergstrasse, Germany). PMID 28376241 DOI: 10.1002/Chem.201700999 |
0.379 |
|
2017 |
Takamuku S, Nakano M, Kertesz M. Cover Picture: Intramolecular Pancake Bonding in Helical Structures (Chem. Eur. J. 31/2017) Chemistry - a European Journal. 23: 7379-7379. DOI: 10.1002/Chem.201701831 |
0.395 |
|
2016 |
Alvarez MP, Ruiz Delgado MC, Taravillo M, Baonza VG, López Navarrete JT, Evans P, Jasti R, Yamago S, Kertesz M, Casado J. The Raman fingerprint of cyclic conjugation: the case of the stabilization of cations and dications in cycloparaphenylenes. Chemical Science. 7: 3494-3499. PMID 29997841 DOI: 10.1039/C6Sc00765A |
0.346 |
|
2016 |
Zafra JL, Qiu L, Yanai N, Mori T, Nakano M, Alvarez MP, Navarrete JT, Gómez-García CJ, Kertesz M, Takimiya K, Casado J. Reversible Dimerization and Polymerization of a Janus Diradical to Produce Labile C-C Bonds and Large Chromic Effects. Angewandte Chemie (International Ed. in English). PMID 27781355 DOI: 10.1002/Anie.201605997 |
0.388 |
|
2016 |
Uchida K, Mou Z, Kertesz M, Kubo T. Fluxional σ-Bonds of the 2,5,8-Trimethylphenalenyl Dimer: Direct Observation of the Sixfold σ-Bond Shift via a π-Dimer. Journal of the American Chemical Society. 138: 4665-72. PMID 26961216 DOI: 10.1021/Jacs.6B01791 |
0.428 |
|
2016 |
Cui ZH, Attah IK, Platt SP, Aziz SG, Kertesz M, El-Shall MS. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+ and Xe.benzene+ radical cations and calculations of their ground state structures Chemical Physics Letters. 649: 8-14. DOI: 10.1016/J.Cplett.2016.02.020 |
0.353 |
|
2015 |
Peña-Alvarez M, Qiu L, Taravillo M, Baonza VG, Delgado MC, Yamago S, Jasti R, Navarrete JT, Casado J, Kertesz M. From linear to cyclic oligoparaphenylenes: electronic and molecular changes traced in the vibrational Raman spectra and reformulation of the bond length alternation pattern. Physical Chemistry Chemical Physics : Pccp. PMID 26649442 DOI: 10.1039/C5Cp05500H |
0.417 |
|
2015 |
Mou Z, Kubo T, Kertesz M. Hetero-π-Dimers of Phenalenyls. Chemistry (Weinheim An Der Bergstrasse, Germany). 21: 18230-6. PMID 26537195 DOI: 10.1002/Chem.201503409 |
0.368 |
|
2015 |
Mou Z, Uchida K, Kubo T, Kertesz M. Correction to Evidence of σ- and π-Dimerization in a Series of Phenalenyls. Journal of the American Chemical Society. 137: 13989. PMID 26488185 DOI: 10.1021/Jacs.5B09570 |
0.308 |
|
2015 |
Cui ZH, Gupta A, Lischka H, Kertesz M. Concave or convex π-dimers: the role of the pancake bond in substituted phenalenyl radical dimers. Physical Chemistry Chemical Physics : Pccp. 17: 23963-9. PMID 26313330 DOI: 10.1039/C5Cp03759J |
0.446 |
|
2015 |
Tian YH, Huang J, Sheng X, Sumpter BG, Yoon M, Kertesz M. Nitrogen Doping Enables Covalent-Like π-π Bonding between Graphenes. Nano Letters. PMID 26151153 DOI: 10.1021/Acs.Nanolett.5B01940 |
0.659 |
|
2015 |
Beaujean P, Kertesz M. Helical molecular redox actuators with pancake bonds? Theoretical Chemistry Accounts. 134: 1-10. DOI: 10.1007/S00214-015-1750-3 |
0.371 |
|
2014 |
Peña Alvarez M, Mayorga Burrezo P, Iwamoto T, Qiu L, Kertesz M, Taravillo M, Baonza VG, López Navarrete JT, Yamago S, Casado J. Chameleon-like behaviour of cyclo[n]paraphenylenes in complexes with C70: on their impressive electronic and structural adaptability as probed by Raman spectroscopy. Faraday Discussions. 173: 157-71. PMID 25468137 DOI: 10.1039/C4Fd00103F |
0.335 |
|
2014 |
Mou Z, Uchida K, Kubo T, Kertesz M. Evidence of σ- and π-dimerization in a series of phenalenyls. Journal of the American Chemical Society. 136: 18009-22. PMID 25394519 DOI: 10.1021/Ja509243P |
0.438 |
|
2014 |
Cui ZH, Lischka H, Beneberu HZ, Kertesz M. Double pancake bonds: pushing the limits of strong π-π stacking interactions. Journal of the American Chemical Society. 136: 12958-65. PMID 25203200 DOI: 10.1021/Ja505624Y |
0.435 |
|
2014 |
Peña Alvarez M, Mayorga Burrezo P, Kertesz M, Iwamoto T, Yamago S, Xia J, Jasti R, López Navarrete JT, Taravillo M, Baonza VG, Casado J. Properties of sizeable [n]cycloparaphenylenes as molecular models of single-wall carbon nanotubes elucidated by Raman spectroscopy: structural and electron-transfer responses under mechanical stress. Angewandte Chemie (International Ed. in English). 53: 7033-7. PMID 24838669 DOI: 10.1002/Anie.201400719 |
0.334 |
|
2014 |
Cui ZH, Lischka H, Beneberu HZ, Kertesz M. Rotational barrier in phenalenyl neutral radical dimer: separating pancake and van der Waals interactions. Journal of the American Chemical Society. 136: 5539-42. PMID 24708421 DOI: 10.1021/Ja412862N |
0.424 |
|
2014 |
Slepetz B, Kertesz M. Divacancies in diamond: a stepwise formation mechanism. Physical Chemistry Chemical Physics : Pccp. 16: 1515-21. PMID 24305744 DOI: 10.1039/C3Cp53384K |
0.78 |
|
2014 |
Cui ZH, Lischka H, Mueller T, Plasser F, Kertesz M. Study of the diradicaloid character in a prototypical pancake-bonded dimer: the stacked tetracyanoethylene (TCNE) anion dimer and the neutral K(2)TCNE(2) complex. Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry. 15: 165-76. PMID 24254985 DOI: 10.1002/Cphc.201300784 |
0.438 |
|
2013 |
Eramian H, Tian YH, Fox Z, Beneberu HZ, Kertesz M. On the anisotropy of van der Waals atomic radii of O, S, Se, F, Cl, Br, and I. The Journal of Physical Chemistry. A. 117: 14184-90. PMID 24283380 DOI: 10.1021/Jp4077728 |
0.568 |
|
2013 |
Slepetz B, Kertesz M. Volume change during thermal [4 + 4] cycloaddition of [2.2] (9,10)anthracenophane. Journal of the American Chemical Society. 135: 13720-7. PMID 23927407 DOI: 10.1021/Ja402485J |
0.772 |
|
2013 |
Kolb B, Kertesz M, Thonhauser T. Binding interactions in dimers of phenalenyl and closed-shell analogues. The Journal of Physical Chemistry. A. 117: 3642-9. PMID 23544786 DOI: 10.1021/Jp3095424 |
0.421 |
|
2012 |
Beneberu HZ, Tian YH, Kertesz M. Bonds or not bonds? Pancake bonding in 1,2,3,5-dithiadiazolyl and 1,2,3,5-diselenadiazolyl radical dimers and their derivatives. Physical Chemistry Chemical Physics : Pccp. 14: 10713-25. PMID 22751477 DOI: 10.1039/C2Cp41018D |
0.613 |
|
2012 |
Tian Y, Kertesz M. Correction to “Charge Shift Bonding Concept in Radical π-Dimers” The Journal of Physical Chemistry A. 116: 7773-7773. DOI: 10.1021/Jp306345K |
0.58 |
|
2011 |
Tian YH, Kertesz M. Charge shift bonding concept in radical π-dimers. The Journal of Physical Chemistry. A. 115: 13942-9. PMID 22023671 DOI: 10.1021/Jp208182S |
0.606 |
|
2011 |
Roumanos M, Kertesz M. Conformations of antipyrines. The Journal of Physical Chemistry. A. 115: 4832-9. PMID 21491880 DOI: 10.1021/Jp201510W |
0.344 |
|
2011 |
Huang J, Sumpter BG, Meunier V, Tian YH, Kertesz M. Cyclo-biphenalenyl biradicaloid molecular materials: Conformation, tautomerization, magnetism, and thermochromism Chemistry of Materials. 23: 874-885. DOI: 10.1021/Cm102320B |
0.697 |
|
2010 |
Slepetz B, Laszlo I, Gogotsi Y, Hyde-Volpe D, Kertesz M. Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Physical Chemistry Chemical Physics : Pccp. 12: 14017-22. PMID 20856969 DOI: 10.1039/C0Cp00523A |
0.778 |
|
2010 |
Tian YH, Kertesz M. Is there a lower limit to the CC bonding distances in neutral radical pi-dimers? The case of phenalenyl derivatives. Journal of the American Chemical Society. 132: 10648-9. PMID 20681685 DOI: 10.1021/Ja103396H |
0.595 |
|
2010 |
Chen YZ, Tian YH, Kertesz M, Weiss RG. Why is there no in-plane H-atom transfer from aryloxy radicals? A theoretical and experimental investigation. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society For Photobiology. 9: 1203-11. PMID 20664863 DOI: 10.1039/C0Pp00113A |
0.541 |
|
2010 |
Tian YH, Kertesz M. Bimolecular hydrogen transfer in phenalene by a stepwise ene-like reaction mechanism. Chemical Communications (Cambridge, England). 46: 4282-4. PMID 20454739 DOI: 10.1039/C0Cc00183J |
0.56 |
|
2010 |
Tian YH, Huang J, Kertesz M. Fluxional sigma-bonds of 2,5,8-tri-tert-butyl-1,3-diazaphenalenyl dimers: stepwise [3,3], [5,5] and [7,7] sigmatropic rearrangements via pi-dimer intermediates. Physical Chemistry Chemical Physics : Pccp. 12: 5084-93. PMID 20445911 DOI: 10.1039/B925259B |
0.705 |
|
2010 |
Hyde-Volpe D, Slepetz B, Kertesz M. The [V-C=C-V] divacancy and the interstitial defect in diamond: Vibrational properties Journal of Physical Chemistry C. 114: 9563-9567. DOI: 10.1021/Jp9105508 |
0.765 |
|
2010 |
Horn P, Kertesz M. Conformational preferences of β-carotene in the confined spaces inside carbon nanotubes Journal of Physical Chemistry C. 114: 12139-12144. DOI: 10.1021/Jp103959S |
0.384 |
|
2010 |
Laszlo I, Kertesz M, Slepetz B, Gogotsi Y. Simulations of large multi-atom vacancies in diamond Diamond and Related Materials. 19: 1153-1162. DOI: 10.1016/J.Diamond.2010.05.001 |
0.774 |
|
2009 |
Kertesz M, Yang S. Energetics of linear carbon chains in one-dimensional restricted environment. Physical Chemistry Chemical Physics : Pccp. 11: 425-30. PMID 19089000 DOI: 10.1039/B812635F |
0.599 |
|
2009 |
Tian YH, Kertesz M. Ladder-type polyenazine based on intramolecular s ··· n interactions: A theoretical study of a small-bandgap polymer Macromolecules. 42: 6123-6127. DOI: 10.1021/Ma901082Z |
0.583 |
|
2009 |
Tian YH, Kertesz M. Low-bandgap pyrazine polymers: Ladder-type connectivity by intramolecular s·N(sp 2) interactions and hydrogen bonds Macromolecules. 42: 2309-2312. DOI: 10.1021/Ma900082W |
0.56 |
|
2009 |
Yumura T, Kertesz M. Roles of conformational restrictions of a bismalonate in the interactions with a carbon nanotube Journal of Physical Chemistry C. 113: 14184-14194. DOI: 10.1021/Jp904078E |
0.391 |
|
2009 |
Tian YH, Kertesz M. Molecular Actuators Designed with S∴N(sp 2) hemibonds attached to a conformationally flexible pivot Chemistry of Materials. 21: 2149-2157. DOI: 10.1021/Cm900029Z |
0.612 |
|
2009 |
Kertesz M, Koller J, Azman A. Need for electronic correlation calculations in polymers International Journal of Quantum Chemistry. 18: 463-466. DOI: 10.1002/Qua.560180848 |
0.396 |
|
2009 |
Kertesz M, Yang S, Tian Y. Energy Gaps and their Control in Thiophene-Based Polymers and Oligomers Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics. 341-364. DOI: 10.1002/9780470745533.ch7 |
0.494 |
|
2008 |
Huang J, Kingsbury S, Kertesz M. Crystal packing of TCNQ anion pi-radicals governed by intermolecular covalent pi-pi bonding: DFT calculations and statistical analysis of crystal structures. Physical Chemistry Chemical Physics : Pccp. 10: 2625-35. PMID 18464977 DOI: 10.1039/B717752F |
0.608 |
|
2008 |
Yang S, Kertesz M. Linear C(n) clusters: are they acetylenic or cumulenic? The Journal of Physical Chemistry. A. 112: 146-51. PMID 18069806 DOI: 10.1021/Jp076805B |
0.623 |
|
2008 |
Tian YH, Park G, Kertesz M. Electronic structure of helicenes, C2S helicenes, and thiaheterohelicenes Chemistry of Materials. 20: 3266-3277. DOI: 10.1021/Cm702813S |
0.616 |
|
2007 |
Huang J, Kertesz M. Theoretical analysis of intermolecular covalent pi-pi bonding and magnetic properties of phenalenyl and spiro-biphenalenyl radical pi-dimers. The Journal of Physical Chemistry. A. 111: 6304-15. PMID 17591758 DOI: 10.1021/Jp072086P |
0.61 |
|
2007 |
Yang S, Kertesz M, Zólyomi V, Kürti J. Application of a novel linear/exponential hybrid force field scaling scheme to the longitudinal Raman active mode of polyyne. The Journal of Physical Chemistry. A. 111: 2434-41. PMID 17388288 DOI: 10.1021/Jp067866X |
0.571 |
|
2007 |
Huang J, Kertesz M. Intermolecular covalent pi-pi bonding interaction indicated by bond distances, energy bands, and magnetism in biphenalenyl biradicaloid molecular crystal. Journal of the American Chemical Society. 129: 1634-43. PMID 17284004 DOI: 10.1021/Ja066426G |
0.627 |
|
2007 |
Yumura T, Kertesz M, Iijima S. Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes. The Journal of Physical Chemistry. B. 111: 1099-109. PMID 17266263 DOI: 10.1021/Jp066508R |
0.414 |
|
2007 |
Yang S, Kertesz M. Theoretical design of low band gap conjugated polymers through ladders with acetylenic crosspieces Macromolecules. 40: 6740-6747. DOI: 10.1021/Ma0708040 |
0.568 |
|
2007 |
Yumura T, Kertesz M. Cooperative behaviors in carbene additions through local modifications of nanotube surfaces Chemistry of Materials. 19: 1028-1034. DOI: 10.1021/Cm0623108 |
0.396 |
|
2007 |
Yumura T, Kertesz M, Iijima S. Confinement effects on site-preferences for cycloadditions into carbon nanotubes Chemical Physics Letters. 444: 155-160. DOI: 10.1016/J.Cplett.2007.07.011 |
0.352 |
|
2006 |
Yang S, Kertesz M. Bond length alternation and energy band gap of polyyne. The Journal of Physical Chemistry. A. 110: 9771-4. PMID 16884210 DOI: 10.1021/Jp062701+ |
0.632 |
|
2006 |
Huang J, Kertesz M. Stepwise cope rearrangement of cyclo-biphenalenyl via an unusual multicenter covalent pi-bonded intermediate. Journal of the American Chemical Society. 128: 7277-86. PMID 16734481 DOI: 10.1021/Ja060427R |
0.623 |
|
2006 |
Huang J, Kertesz M. One-dimensional metallic conducting pathway of cyclohexyl-substituted spiro-biphenalenyl neutral radical molecular crystal. Journal of the American Chemical Society. 128: 1418-9. PMID 16448090 DOI: 10.1021/Ja057198D |
0.586 |
|
2006 |
Yumura T, Kertesz M. Covalent bond formation in defected nanopeapods induces local deformations on nanotube walls Materials Research Society Symposium Proceedings. 963: 13-18. DOI: 10.1557/Proc-0963-Q20-17 |
0.37 |
|
2006 |
Yang S, Kertesz M. Application of the linear/exponential hybrid force field scaling scheme to the bond length alternation modes of polyacetylene Chemical Physics Letters. 432: 356-361. DOI: 10.1016/J.Cplett.2006.10.050 |
0.562 |
|
2006 |
Kürti J, Zólyomi V, Yang S, Kertesz M. Double walled carbon nanotube with the smallest inner diameter: a first principles study Physica Status Solidi (B). 243: 3464-3467. DOI: 10.1002/Pssb.200669189 |
0.557 |
|
2005 |
Huang J, Kertesz M. Electronic structures and charge transport properties of the organic semiconductor bis[1,2,5]thiadiazolo-p-quinobis(1,3-dithiole), BTQBT, and its derivatives. The Journal of Physical Chemistry. B. 109: 12891-8. PMID 16852600 DOI: 10.1021/Jp0513869 |
0.549 |
|
2005 |
Kertesz M, Choi CH, Yang S. Conjugated polymers and aromaticity. Chemical Reviews. 105: 3448-81. PMID 16218558 DOI: 10.1021/Cr990357P |
0.525 |
|
2005 |
Huang J, Kertesz M. Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials. The Journal of Chemical Physics. 122: 234707. PMID 16008473 DOI: 10.1063/1.1925611 |
0.569 |
|
2005 |
Rusznyák Á, Zólyomi V, Kürti J, Yang S, Kertesz M. Bond-length alternation and charge transfer in a linear carbon chain encapsulated within a single-walled carbon nanotube Physical Review B. 72. DOI: 10.1103/Physrevb.72.155420 |
0.588 |
|
2004 |
Yang S, Olishevski P, Kertesz M. Bandgap calculations for conjugated polymers Synthetic Metals. 141: 171-177. DOI: 10.1016/J.Synthmet.2003.08.019 |
0.592 |
|
2004 |
Huang J, Kertesz M. Intermolecular transfer integrals for organic molecular materials: Can basis set convergence be achieved? Chemical Physics Letters. 390: 110-115. DOI: 10.1016/J.Cplett.2004.03.141 |
0.535 |
|
2004 |
Kürti J, Zólyomi V, Kertesz M, Sun G, Baughman RH, Kuzmany H. Individualities and average behavior in the physical properties of small diameter single-walled carbon nanotubes Carbon. 42: 971-978. DOI: 10.1016/J.Carbon.2003.12.029 |
0.381 |
|
2003 |
Huang J, Kertesz M. Spin crossover of spiro-biphenalenyl neutral radical molecular conductors. Journal of the American Chemical Society. 125: 13334-5. PMID 14583010 DOI: 10.1021/Ja038038+ |
0.548 |
|
2003 |
Sun G, Kertesz M, Kürti J, Baughman RH. Dimensional change as a function of charge injection in graphite intercalation compounds: A density functional theory study Physical Review B. 68. DOI: 10.1103/Physrevb.68.125411 |
0.326 |
|
2003 |
Kürti J, Zólyomi V, Kertesz M, Guangyu S. The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour New Journal of Physics. 5: 125-125. DOI: 10.1088/1367-2630/5/1/125 |
0.325 |
|
2003 |
Sun G, Kürti J, Kertesz M, Baughman RH. Variations of the Geometries and Band Gaps of Single-Walled Carbon Nanotubes and the Effect of Charge Injection The Journal of Physical Chemistry B. 107: 6924-6931. DOI: 10.1021/Jp022629P |
0.429 |
|
2003 |
Sun G, Kürti J, Rajczy P, Kertesz M, Hafner J, Kresse G. Performance of the Vienna ab initio simulation package (VASP) in chemical applications Journal of Molecular Structure: Theochem. 624: 37-45. DOI: 10.1016/S0166-1280(02)00733-9 |
0.42 |
|
2002 |
Sun G, Kürti J, Kertesz M, Baughman RH. Dimensional changes as a function of charge injection in single-walled carbon nanotubes. Journal of the American Chemical Society. 124: 15076-80. PMID 12475352 DOI: 10.1021/Ja020616J |
0.326 |
|
2002 |
Sun G, Kürti J, Kertesz M, Baughman RH. Dimensional changes as a function of charge injection for trans-polyacetylene: A density functional theory study Journal of Chemical Physics. 117: 7691-7697. DOI: 10.1063/1.1509052 |
0.377 |
|
2002 |
Sun G, Kertesz M. Vibrational Raman spectra of C70 and C706- studied by density functional theory Journal of Physical Chemistry A. 106: 6381-6386. DOI: 10.1021/Jp020222E |
0.335 |
|
2001 |
Sun G, Kertesz M. Isomer identification for fullerene C84 by 13C NMR spectrum: A density-functional theory study Journal of Physical Chemistry A. 105: 5212-5220. DOI: 10.1021/Jp0108418 |
0.394 |
|
2001 |
Sun G, Kertesz M. Identification for IPR isomers of fullerene C82 by theoretical 13C NMR spectra calculated by density functional theory Journal of Physical Chemistry A. 105: 5468-5472. DOI: 10.1021/Jp004544Z |
0.355 |
|
2000 |
Sun G, Kertesz M. Theoretical evidence for the major isomers of fullerene C84 based on 13CNMR chemical shifts New Journal of Chemistry. 24: 741-743. DOI: 10.1039/B004944L |
0.366 |
|
2000 |
Choi CH, Kertesz M, Mihaly L. Vibrational Assignment of All 46 Fundamentals of C60 and C60 6 : Scaled Quantum Mechanical Results Performed in Redundant Internal Coordinates and Compared to Experiments Journal of Physical Chemistry A. 104: 102-112. DOI: 10.1021/Jp991420H |
0.388 |
|
2000 |
Sun G, Kertesz M. Theoretical 13C NMR spectra of IPR isomers of fullerenes C60, C70, C72, C74, C76, and C78 studied by density functional theory Journal of Physical Chemistry A. 104: 7398-7403. DOI: 10.1021/Jp001272R |
0.331 |
|
2000 |
Sun G, Kertesz M. Theoretical 13C NMR spectra of IPR isomers of fullerene C80 : a density functional theory study Chemical Physics Letters. 328: 387-395. DOI: 10.1016/S0009-2614(00)00969-6 |
0.379 |
|
1999 |
Choi CH, Kertesz M, Boyer M, Cochet M, Quillard S, Louarn G, Lefrant S. Conformational Fingerprints in the IR and Raman Spectra of Oligoanilines: A Combined Theoretical and Experimental Study Chemistry of Materials. 11: 855-857. DOI: 10.1021/Cm981022B |
0.31 |
|
1999 |
Boyer M, Choi C, Kertesz M, Cochet M, Quillard S, Lefrant S, Louarn G. Vibrational and conformational analysis of a model compound of pernigraniline N,N′ diphenyl-1,4-benzoquinonediimine Synthetic Metals. 101: 784. DOI: 10.1016/S0379-6779(98)00776-0 |
0.335 |
|
1999 |
Choi CH, Kertesz M, Dobrin S, Michl J. Argon-matrix-isolation Raman spectra and density functional study of 1,3-butadiene conformers Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta). 102: 196-206. DOI: 10.1007/S002140050491 |
0.38 |
|
1998 |
Choi CH, Kertesz M. Bond length alternation and aromaticity in large annulenes Journal of Chemical Physics. 108: 6681-6688. DOI: 10.1063/1.476083 |
0.401 |
|
1998 |
Choi CH, Kertesz M. New interpretation of the valence tautomerism of 1,6-methano[10]annulenes and its application to fullerene derivatives Journal of Physical Chemistry A. 102: 3429-3437. DOI: 10.1021/Jp980773Y |
0.441 |
|
1998 |
Choi CH, Kertesz M. Is a 1.90 Å C-C bond length in polymeric fullerides possible? Chemical Physics Letters. 282: 318-324. DOI: 10.1016/S0009-2614(97)01335-3 |
0.335 |
|
1997 |
Choi CH, Kertesz M, Karpfen A. The effects of electron correlation on the degree of bond alternation and electronic structure of oligomers of polyacetylene Journal of Chemical Physics. 107: 6712-6721. DOI: 10.1063/1.474914 |
0.437 |
|
1997 |
Cuff L, Kertesz M. Evidence of quinonoid structures in the vibrational spectra of thiophene based conducting polymers: Poly(thiophene), poly(thieno[3,4-6]benzene), and poly(thieno[3,4-b]pyrazine) Journal of Chemical Physics. 106: 5541-5553. DOI: 10.1063/1.473576 |
0.384 |
|
1997 |
Frapper G, Cu C, Kertesz M, Halet J, Saillard J. Can carbon monoxide polymerize? A theoretical investigation of polyketone Chemical Communications. 2011-2012. DOI: 10.1039/A705721K |
0.35 |
|
1997 |
Choi CH, Kertesz M. Consistencies between experiments and quantum calculations of strained C-C single bond lengths Chemical Communications. 2199-2200. DOI: 10.1039/A705439D |
0.371 |
|
1997 |
Choi CH, Kertesz M. Conformational studies of vibrational properties and electronic states of leucoemeraldine base and its oligomers Macromolecules. 30: 620-630. DOI: 10.1021/Ma961120N |
0.38 |
|
1997 |
Karpfen A, Choi CH, Kertesz M. Single-bond torsional potentials in conjugated systems: A comparison of ab initio and density functional results Journal of Physical Chemistry A. 101: 7426-7433. DOI: 10.1021/Jp971606L |
0.382 |
|
1997 |
Choi CH, Kertesz M. Conformational information from vibrational spectra of styrene, trans-stilbene, and cis-stilbene Journal of Physical Chemistry A. 101: 3823-3831. DOI: 10.1021/Jp970620V |
0.391 |
|
1997 |
Choi CH, Kertesz M, Karpfen A. Do localized structures of [14]- and [18] annulenes exist? Journal of the American Chemical Society. 119: 11994-11995. DOI: 10.1021/Ja971035A |
0.356 |
|
1997 |
Kertesz M, Choi CH, Hong SY. Conformational information from vibrational spectra of polyaniline Synthetic Metals. 85: 1073-1076. DOI: 10.1016/S0379-6779(97)80153-1 |
0.385 |
|
1997 |
Choi CH, Kertesz M, Karpfen A. Limitations of current density functional theories for the description of partial π-bond breaking Chemical Physics Letters. 276: 266-268. DOI: 10.1016/S0009-2614(97)00806-3 |
0.381 |
|
1996 |
Kertesz M, Ashertehrani A. Electronic structure of polyfluoranthene ladder polymers Macromolecules. 29: 940-945. DOI: 10.1021/Ma951232Z |
0.362 |
|
1996 |
Choi CH, Kertesz M. Density Functional Studies of Vibrational Properties of HCN, H2O, CH2O, CH4, and C2H4 The Journal of Physical Chemistry. 100: 16530-16537. DOI: 10.1021/Jp961325Y |
0.34 |
|
1996 |
Choi CH, Kertesz M. A new partition of the atomic polar tensor: The benzene molecule Chemical Physics Letters. 263: 697-702. DOI: 10.1016/S0009-2614(96)01263-8 |
0.325 |
|
1995 |
Kastner J, Kuzmany H, Vegh D, Landl M, Cuff L, Kertesz M. Raman Spectra of Poly(2,3-R,R-thieno[3,4-b]pyrazine). A New Low-Band-Gap Polymer Macromolecules. 28: 2922-2929. DOI: 10.1021/Ma00112A044 |
0.361 |
|
1995 |
Kertesz M. Structure and electronic structure of low-band-gap ladder polymers Macromolecules. 28: 1475-1480. DOI: 10.1021/Ma00109A019 |
0.414 |
|
1995 |
Kertesz M, Hughbanks TR. Low bandgap ladder polymers Synthetic Metals. 69: 699-700. DOI: 10.1016/0379-6779(94)02621-5 |
0.371 |
|
1995 |
Cuff L, Kertesz M, Scherf U, Müllen K. Interpretation of the vibrational spectra of planarized poly-p-phenylene Synthetic Metals. 69: 683-684. DOI: 10.1016/0379-6779(94)02613-4 |
0.338 |
|
1995 |
Kertesz M. The aromatic - quinonoid transition in conducting polymers Synthetic Metals. 69: 641-644. DOI: 10.1016/0379-6779(94)02599-T |
0.311 |
|
1995 |
Kastner J, Kuzmany H, Vegh D, Landl M, Cuff L, Kertesz M. Raman spectra and ground state of the new low bandgap polymer poly(thienopyrazine) Synthetic Metals. 69: 593-594. DOI: 10.1016/0379-6779(94)02584-L |
0.331 |
|
1994 |
Cuff L, Kertesz M. Ab initio oligomer approach to vibrational spectra of polymers: Comparison of helical and planar poly(p-phenylene) Macromolecules. 27: 762-770. DOI: 10.1021/Ma00081A022 |
0.362 |
|
1994 |
Cuff L, Cui C, Kertesz M. Role of charge transfer and quinonoid structure in the Raman spectrum of doped poly(p-phenylene) Journal of the American Chemical Society. 116: 9269-9274. DOI: 10.1021/Ja00099A051 |
0.381 |
|
1994 |
Cuff L, Kertesz M. Theoretical prediction of the vibrational spectrum of fluorene and planarized poly(p-phenylene) Journal of Physical Chemistry®. 98: 12223-12231. DOI: 10.1021/J100098A017 |
0.37 |
|
1993 |
Frapper G, Kertesz M. Metal oligo-yne polymers: Electronic structures of [-(L) nMC≡CRC≡C-]x Polymers Inorganic Chemistry. 32: 732-740. DOI: 10.1021/Ic00057A037 |
0.312 |
|
1993 |
Cuff L, Kertesz M, Geisselbrecht J, Kürti J, Kuzmany H. Interpretation of the Raman spectra of polyisothianaphthene: Is the structure aromatic or quinonoid? Synthetic Metals. 55: 564-569. DOI: 10.1016/0379-6779(93)90992-6 |
0.346 |
|
1993 |
Kertesz M, Frapper G, Hong S, Lee Y, Kim O. Electronic structure of ladder polymers Synthetic Metals. 57: 4344-4349. DOI: 10.1016/0379-6779(93)90748-L |
0.36 |
|
1993 |
Kürti J, Surján P, Kertész M, Frapper G. Design of small gap conjugated polymers Synthetic Metals. 57: 4338-4343. DOI: 10.1016/0379-6779(93)90747-K |
0.367 |
|
1993 |
Frapper G, Kertesz M. Comparison of two alternative forms of polysilole: Another quasidegenerate polymer? Synthetic Metals. 57: 4255-4259. DOI: 10.1016/0379-6779(93)90733-D |
0.427 |
|
1992 |
Baughman RH, Murthy NS, Eckhardt H, Kertesz M. Charge oscillations and structure for alkali-metal-doped polyacetylene Physical Review B. 46: 10515-10539. DOI: 10.1103/Physrevb.46.10515 |
0.405 |
|
1992 |
Frapper G, Kertesz M. Geometrical and electronic structures of .pi.-conjugated silicon ring polymers Organometallics. 11: 3178-3184. DOI: 10.1021/Om00046A011 |
0.338 |
|
1992 |
Hong SY, Kertesz M, Lee YS, Kim OK. Geometrical and electronic structures of a benzimidazobenzophenanthroline-type ladder polymer (BBL) Macromolecules. 25: 5424-5429. DOI: 10.1021/Ma00046A046 |
0.423 |
|
1992 |
Cui CX, Kertesz M. Assignment of the vibrational spectra of polysilane and its oligomers Macromolecules. 25: 1103-1108. DOI: 10.1021/Ma00029A015 |
0.322 |
|
1992 |
Hong SY, Kertesz M, Lee YS, Kim OK. Electronic structures of heterocyclic ladder polymers; polyphenothiazine, polyphenoxazine, and polyphenoquinoxaline Chemistry of Materials. 4: 378-383. DOI: 10.1021/Cm00020A027 |
0.316 |
|
1992 |
Záliš S, Kertesz M. The effect of side-group substitution on the energy gaps of phenylene and thienylene oligomers and polymers Synthetic Metals. 47: 179-186. DOI: 10.1016/0379-6779(92)90385-V |
0.399 |
|
1992 |
Kürti J, Surján PR, Kertesz M. Searching for low-band-gap conjugated polymers by LHS calculations Synthetic Metals. 50: 537-542. DOI: 10.1016/0379-6779(92)90210-A |
0.407 |
|
1991 |
Kuerti J, Surjan PR, Kertesz M. Electronic structure and optical absorption of poly(biisothianaphthene-methine) and poly(isonaphthothiophene-thiophene): two low-band-gap polymers Journal of the American Chemical Society. 113: 9865-9867. DOI: 10.1021/Ja00026A031 |
0.335 |
|
1991 |
Cui CX, Kertesz M. Conformations and Electronic Structures of Poly(ketene) and Related Conjugated Polymers: Reduction of the n-π* Band Gap Journal of the American Chemical Society. 113: 4404-4409. DOI: 10.1021/Ja00012A005 |
0.373 |
|
1991 |
Karpfen A, Kertesz M. Energetics and geometry of conducting polymers from oligomers Journal of Physical Chemistry. 95: 7680-7681. DOI: 10.1021/J100173A024 |
0.357 |
|
1991 |
Eckhardt H, Baughman RH, Buisson JP, Lefrant S, Cui CX, Kertesz M. The vibrational properties and defect structures in vinylene-linked low-band-gap conducting polymers Synthetic Metals. 43: 3413-3418. DOI: 10.1016/0379-6779(91)91316-3 |
0.435 |
|
1990 |
Hong SY, Kertesz M. Dependence of Youngs modulus of trans-polyacetylene upon charge transfer Physical Review Letters. 64: 3031-3034. DOI: 10.1103/Physrevlett.64.3031 |
0.315 |
|
1990 |
Hong SY, Kertesz M. Theoretical evaluation of Young-s moduli of polymers Physical Review B. 41: 11368-11378. DOI: 10.1103/Physrevb.41.11368 |
0.349 |
|
1990 |
Cui CX, Kertesz M. Quantum-mechanical oligomer approach for the calculation of vibrational spectra of polymers The Journal of Chemical Physics. 93: 5257-5266. DOI: 10.1063/1.459644 |
0.341 |
|
1990 |
Cui CX, Karpfen A, Kertesz M. Torsional potentials of simple polysilane derivatives Macromolecules. 23: 3302-3308. DOI: 10.1021/Ma00215A017 |
0.385 |
|
1990 |
Cui CX, Kertesz M, Jiang Y. Extraction of polymer properties from oligomer calculations Journal of Physical Chemistry. 94: 5172-5179. DOI: 10.1021/J100375A074 |
0.42 |
|
1990 |
Cui CX, Kertesz M. Bonding in crystals containing one-dimensional bridged and unbridged group 11 and 12 linear, zigzag, and helical chains Inorganic Chemistry. 29: 2568-2575. DOI: 10.1021/Ic00339A009 |
0.324 |
|
1990 |
Lee YS, Kertesz M, Elsenbaumer RL. Importance of energetics in the design of small bandgap conducting polymers Chemistry of Materials. 2: 526-530. DOI: 10.1021/Cm00011A012 |
0.366 |
|
1990 |
Cui CX, Kertesz M. Helical Peierls distortion: Formation of helices of polyketone and polyisocyanide Chemical Physics Letters. 169: 445-449. DOI: 10.1016/0009-2614(90)87075-3 |
0.349 |
|
1989 |
Kertesz M, Cui C. Helical Conformations of Conducting Polymers Mrs Proceedings. 173. DOI: 10.1557/Proc-173-391 |
0.329 |
|
1989 |
Cui CX, Kertesz M. Two helical conformations of polythiophene, polypyrrole, and their derivatives Physical Review B. 40: 9661-9670. DOI: 10.1103/Physrevb.40.9661 |
0.326 |
|
1989 |
Hughbanks T, Kertesz M. Superdegeneracies in Extended Systems; a Prerequisite for π Ferromagnets? Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics. 176: 115-123. DOI: 10.1080/00268948908037473 |
0.334 |
|
1989 |
Cui CX, Kertesz M. Conformation study of helical main-group polymers: Organic and inorganic, trans and gauche Journal of the American Chemical Society. 111: 4216-4224. DOI: 10.1021/Ja00194A010 |
0.414 |
|
1989 |
Tremel W, Hoffmann R, Kertesz M. Inorganic rings, intact and cleaved, between two metal fragments Journal of the American Chemical Society. 111: 2030-2039. DOI: 10.1021/Ja00188A013 |
0.306 |
|
1989 |
Kertesz M, Lee YS. Electronic structure of small gap polymers Synthetic Metals. 28: 545-552. DOI: 10.1016/0379-6779(89)90572-9 |
0.401 |
|
1989 |
Kertesz M, Lee YS, Stewart JJP. Structure and electronic structure of polyacene International Journal of Quantum Chemistry. 35: 305-313. DOI: 10.1002/Qua.560350207 |
0.429 |
|
1988 |
Cioslowski J, Kertesz M. Note on the finite number of interacting neighbors and the finite number of k‐point effects on the total electronic energy of a metallic polymer The Journal of Chemical Physics. 88: 2088-2089. DOI: 10.1063/1.454087 |
0.307 |
|
1988 |
Lee YS, Kertesz M. The electronic structure of BC<inf>3</inf> Journal of the Chemical Society, Chemical Communications. 75. DOI: 10.1039/C39880000075 |
0.33 |
|
1988 |
Gomez-Romero P, Lee YS, Kertesz M. Band structure calculation of extended poly (copper phthalocyanine) one-dimensional and two-dimensional polymers Inorganic Chemistry. 27: 3672-3675. DOI: 10.1021/Ic00293A049 |
0.346 |
|
1987 |
Baughman RH, Eckhardt H, Kertesz M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms The Journal of Chemical Physics. 87: 6687-6699. DOI: 10.1063/1.453405 |
0.374 |
|
1987 |
Kertesz M, Lee YS. Energy gap and bond length alternation in heterosubstituted narrow gap semiconducting polymers Journal of Physical Chemistry. 91: 2690-2692. DOI: 10.1021/J100295A007 |
0.358 |
|
1987 |
Kertesz M, Guloy AM. Bonding and electronic structure of conducting mercury networks: KHgC4n graphite amalgams and Hg3MF6 layers and chains Inorganic Chemistry. 26: 2852-2857. DOI: 10.1021/Ic00264A027 |
0.351 |
|
1987 |
Cioslowski J, Kertesz M, Surjan PR, Poirier RA. Connected moments expansion calculations of the correlation energy in small molecules Chemical Physics Letters. 138: 516-519. DOI: 10.1016/0009-2614(87)80115-X |
0.35 |
|
1987 |
Lee YS, Kertesz M. The effect of additional fused rings on the stabilities and the band gaps of heteroconjugated polymers International Journal of Quantum Chemistry. 32: 163-170. DOI: 10.1002/Qua.560320719 |
0.376 |
|
1986 |
Cioslowski J, Kertesz M. An irregular dependence of the total electronic energy of clusters on their size The Journal of Chemical Physics. 85: 7193-7197. DOI: 10.1063/1.451355 |
0.333 |
|
1986 |
Kertesz M. Electronic structure of highly doped conducting polymers International Journal of Quantum Chemistry. 29: 1165-1176. DOI: 10.1002/Qua.560290515 |
0.395 |
|
1985 |
Kertesz M. Changes of Lattice Geometries Upon Charge Transfer Molecular Crystals and Liquid Crystals. 126: 103-110. DOI: 10.1080/15421408508084159 |
0.342 |
|
1985 |
Kertesz M. Energy bands in solids: Bonding, energy levels and orbitals International Reviews in Physical Chemistry. 4: 125-164. DOI: 10.1080/01442358509353357 |
0.379 |
|
1984 |
Biswas R, Kertesz M. Electronic structure and metallization of silicon Physical Review B. 29: 1791-1797. DOI: 10.1103/Physrevb.29.1791 |
0.338 |
|
1984 |
Kertesz M, Hoffmann R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides Journal of the American Chemical Society. 106: 3453-3460. DOI: 10.1021/Ja00324A012 |
0.309 |
|
1984 |
Kertesz M, Hoffmann R. The graphite-to-diamond transformation Journal of Solid State Chemistry. 54: 313-319. DOI: 10.1016/0022-4596(84)90162-2 |
0.351 |
|
1983 |
Kertesz M, Hoffmann R. Higher order Peierls distortion of one-dimensional carbon skeletons Solid State Communications. 47: 97-102. DOI: 10.1016/0038-1098(83)90617-8 |
0.371 |
|
1983 |
Kuzmany H, Surján P, Kertész M. Electronic transition moments and optical absorption for trans-polyacetylene Solid State Communications. 48: 243-247. DOI: 10.1016/0038-1098(83)90279-X |
0.308 |
|
1982 |
Kertesz M, Vonderviszt F, Hoffman R. Change of C–C Bond Length in Layers of Graphite Upon Charge Transfer Mrs Proceedings. 20. DOI: 10.1557/Proc-20-141 |
0.381 |
|
1982 |
Surján PR, Mayer I, Kertész M. Localization and delocalization: Distinction between through space and through bond interactions The Journal of Chemical Physics. 77: 2454-2459. DOI: 10.1063/1.444115 |
0.368 |
|
1982 |
Kertész M. Electronic Structure of Polymers Advances in Quantum Chemistry. 15: 161-214. DOI: 10.1016/S0065-3276(08)60123-9 |
0.374 |
|
1982 |
Kertész M, Vonderviszt F, Pekker S. Change of geometry of polyacetylene upon charge transfer Chemical Physics Letters. 90: 430-433. DOI: 10.1016/0009-2614(82)80249-2 |
0.396 |
|
1982 |
Kertesz M, Vonderviszt F. Electronic structure of long polyiodide chains Journal of the American Chemical Society. 104: 5889-5893. DOI: 10.1002/Chin.198305004 |
0.303 |
|
1981 |
Monkhorst HJ, Kertesz M. Exact-exchange asymptotics in polymer Hartree-Fock calculations Physical Review B. 24: 3015-3024. DOI: 10.1103/Physrevb.24.3015 |
0.346 |
|
1981 |
Kertesz M, Gondor G. Electronic density of states of a stereo-irregular polyethylene Journal of Physics C: Solid State Physics. 14. DOI: 10.1088/0022-3719/14/28/002 |
0.379 |
|
1981 |
Kertesz M, Surjan PR. ON TRAPPING OF PHASE KINKS IN POLYACETYLENE Molecular Crystals and Liquid Crystals. 77: 341-348. DOI: 10.1080/00268948108075253 |
0.335 |
|
1981 |
Kertész M, Surján PR. Trapping of phase kinks in polyacetylene Solid State Communications. 39: 611-614. DOI: 10.1016/0038-1098(81)90334-3 |
0.358 |
|
1979 |
Kertész M, Koller J, Aman A. Different orbitals for different spins for solids: Fully variational ab initio studies on hydrogen and carbon atomic chains, polyene, and poly(sulphur nitride) Physical Review B. 19: 2034-2040. DOI: 10.1103/Physrevb.19.2034 |
0.411 |
|
1979 |
Kiss Á, Kertész M, Čársky P, Wedel H. Electronic structure and spectra of tetrathiotetracene and related molecules Tetrahedron. 35: 515-518. DOI: 10.1016/0040-4020(79)80148-9 |
0.402 |
|
1979 |
Kertész M, Koller J, Azman A. Numerical calculation of localized (Wannier) functions from ab-initio Hartree-Fock wave functions Solid State Communications. 30: 329-330. DOI: 10.1016/0038-1098(79)90643-4 |
0.32 |
|
1979 |
Kertesz M, Koller J, Jagodic F, Ažman A. Deuteron quadrupole coupling constant in a hydrogen fluoride chain Journal of Molecular Structure. 53: 143-145. DOI: 10.1016/0022-2860(79)80334-8 |
0.305 |
|
1979 |
Kertesz M, Koller J, Ažman A. Localized orbitals in an extended hydrogen-bonded system - (HF)x Journal of Molecular Structure. 56: 289-292. DOI: 10.1016/0022-2860(79)80166-0 |
0.356 |
|
1978 |
Kertesz M, Koller J, Ažman A. Electronic Structure and Transport Properties of Polypeptide: Polyglycine Chain with Hydrated Side Group Zeitschrift FüR Naturforschung A. 33: 1392-1392. DOI: 10.1515/Zna-1978-1121 |
0.354 |
|
1978 |
Kertesz M, Koller J, Ažman A. Ab-initio Crystal Orbital Study of Hydrogen Fluoride Chain. Basis Set Dependence / The Influence of Various Basis Sets in Ab-initio Crystal Orbital Studies is Reported for Hydrogen Fluoride Chain Zeitschrift FüR Naturforschung A. 33: 249-250. DOI: 10.1515/Zna-1978-0231 |
0.357 |
|
1978 |
Kertész M, Koller J, Aman A. Electronic structure and transport properties of polypeptides: An ab initio crystal orbital study of a periodic polyglycine chain Physical Review B. 18: 5649-5656. DOI: 10.1103/Physrevb.18.5649 |
0.404 |
|
1978 |
Holczer K, Mihaly G, Janossy A, Gruner G, Kertesz M. Complex TCNQ salts with asymmetric donors. I. Transport properties Journal of Physics C: Solid State Physics. 11: 4707-4725. DOI: 10.1088/0022-3719/11/23/016 |
0.352 |
|
1978 |
Kertesz M, Koller J, Ažman A. Ab initio Hartree-Fock crystal orbital studies. II. Energy bands of an infinite carbon chain The Journal of Chemical Physics. 68: 2779-2782. DOI: 10.1063/1.436070 |
0.402 |
|
1978 |
Kertész M, Koller J, Ažman A. Structure of infinite polyenes: Ab initio quantum chemical study Journal of the Chemical Society, Chemical Communications. 575-576. DOI: 10.1039/C39780000575 |
0.344 |
|
1978 |
Kertész M, Koller J, Ažman A. On the electronic structure of polydiacetylenes as studied by the ab initio crystal orbital method Chemical Physics. 27: 273-280. DOI: 10.1016/0301-0104(78)88012-4 |
0.4 |
|
1978 |
Kamarás K, Kertész M. Coulomb effects in the organic charge transfer salt TTT2I3 Solid State Communications. 28: 607-611. DOI: 10.1016/0038-1098(78)90590-2 |
0.371 |
|
1978 |
Kertesz M, Koller J, Ažman A. Electronic structures of polydiacetylene backbones Chemical Physics Letters. 56: 18-19. DOI: 10.1016/0009-2614(78)80175-4 |
0.325 |
|
1978 |
Kertesz M, Koller J, Zakrajšek E, Ažman A. Crystal orbital studies of polymers with defects Chemical Physics Letters. 53: 446-448. DOI: 10.1016/0009-2614(78)80044-X |
0.382 |
|
1978 |
Kertesz M, Koller J, A?man A. Energy band structure of (SN)x chain: Unrestricted Hartree-Fock and charge density wave solutions International Journal of Quantum Chemistry. 14: 239-243. DOI: 10.1002/Qua.560140303 |
0.349 |
|
1977 |
Kertesz M, Koller J, Azman A. Calculated forbidden band gap in periodic protein models indicating them to be insulators [28] Nature. 266: 278. PMID 846576 DOI: 10.1038/266278A0 |
0.415 |
|
1977 |
Kertész M, Koller J, Aman A. Ab initio Hartree–Fock crystal orbital studies. Energy bands in polyene reconsidered The Journal of Chemical Physics. 67: 1180. DOI: 10.1063/1.434972 |
0.416 |
|
1977 |
Kertesz M, Koller J, Azman A. Non empirical calculations of hydrogen fluoride (HF) cluster and chain dipole moments Journal of Molecular Structure. 36: 336-338. DOI: 10.1016/0022-2860(77)85068-0 |
0.367 |
|
1976 |
Kertesz M, Koller J, Zakrajšek E, Ažman A. Ab-Initio Crystal Orbital Study of One-Dimensional Hydrogen Bonded Chain-Formic Acid Zeitschrift Fur Naturforschung - Section a Journal of Physical Sciences. 31: 637-638. DOI: 10.1515/Zna-1976-0619 |
0.396 |
|
1976 |
Kertesz M, Koller J, Aman A. Ab initio study of a linear chain of H atoms using different orbitals for different spins Physical Review B. 14: 76-77. DOI: 10.1103/Physrevb.14.76 |
0.323 |
|
1976 |
Kertész M, Koller J, Ažman A. Ab initio crystal orbital study of HCN linear chain Chemical Physics Letters. 41: 146-148. DOI: 10.1016/0009-2614(76)85268-2 |
0.441 |
|
1976 |
Kertész M, Suhai S, Ažman A, Kocjan D, Kiss A. On the electronic structure of disulfur dinitride, S2N2: comments on the applicability of semi-empirical energy band methods for polysulfur nitride, (SN)x Chemical Physics Letters. 44: 53-57. DOI: 10.1016/0009-2614(76)80407-1 |
0.365 |
|
1976 |
Kertész M. On the AB initio crystal orbital method Acta Physica Academiae Scientiarum Hungaricae. 41: 107-123. DOI: 10.1007/Bf03157511 |
0.327 |
|
1976 |
Kertesz M, Koller J, Ažman A. Ab initio crystal orbital studies on linear chains of H atoms Theoretica Chimica Acta. 41: 89-91. DOI: 10.1007/Bf00558027 |
0.322 |
|
1975 |
Kertész M, Koller J, Ažman A, Suhai S. AB initio energy band structure of polysulfur nitride, (SN)x Physics Letters A. 55: 107-108. DOI: 10.1016/0375-9601(75)90144-9 |
0.394 |
|
1975 |
Kertész M, Koller J, Ažman A. Ab initio crystal orbital treatment of hydrogen fluoride (HF) chains Chemical Physics Letters. 36: 576-579. DOI: 10.1016/0009-2614(75)85341-3 |
0.433 |
|
1974 |
Kertész M, Suhai S, Ladik J. PPP DODS crystal orbital calculation of polyene, polyformamide, polycytosine and poly(s-triazine) Acta Physica Academiae Scientiarum Hungaricae. 36: 77-90. DOI: 10.1007/Bf03157190 |
0.389 |
|
Show low-probability matches. |