Year |
Citation |
Score |
2024 |
Jin J, Noid WG, Li J, Kumar R, Cao J, Jang S, Paesani F, Reichman D. A Tribute to Gregory A. Voth. The Journal of Physical Chemistry. B. 128: 7703-7706. PMID 39143864 DOI: 10.1021/acs.jpcb.4c04455 |
0.345 |
|
2024 |
Ture TM, Jang SJ. Simple and General Unitarity Conserving Numerical Real-Time Propagators of the Time-Dependent Schrödinger Equation Based on Magnus Expansion. The Journal of Physical Chemistry. A. 128: 2871-2882. PMID 38564477 DOI: 10.1021/acs.jpca.3c07866 |
0.321 |
|
2022 |
Jang SJ. Partially polaron-transformed quantum master equation for exciton and charge transport dynamics. The Journal of Chemical Physics. 157: 104107. PMID 36109233 DOI: 10.1063/5.0106546 |
0.366 |
|
2020 |
Chen N, Devi M, Jang SJ. Computational modeling of charge hopping dynamics along a disordered one-dimensional wire with energy gradients in quantum environments. The Journal of Chemical Physics. 153: 054109. PMID 32770925 DOI: 10.1063/5.0011004 |
0.387 |
|
2019 |
Jang SJ. Fourth order expressions for the electronic absorption lineshape of molecular excitons. The Journal of Chemical Physics. 151: 044110. PMID 31370536 DOI: 10.1063/1.5100986 |
0.337 |
|
2017 |
Jang S, Voth GA. Non-uniqueness of quantum transition state theory and general dividing surfaces in the path integral space. The Journal of Chemical Physics. 146: 174106. PMID 28477603 DOI: 10.1063/1.4982053 |
0.454 |
|
2016 |
Jang S. Generalized quantum Fokker-Planck equation for photoinduced nonequilibrium processes with positive definiteness condition. The Journal of Chemical Physics. 144: 214102. PMID 27276940 DOI: 10.1063/1.4952477 |
0.45 |
|
2016 |
Jang S, Voth GA. Can quantum transition state theory be defined as an exact t = 0+ limit? The Journal of Chemical Physics. 144: 084110. PMID 26931684 DOI: 10.1063/1.4942482 |
0.48 |
|
2015 |
Jang S, Rivera E, Montemayor D. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization. The Journal of Physical Chemistry Letters. 6: 928-34. PMID 26262847 DOI: 10.1021/Acs.Jpclett.5B00078 |
0.382 |
|
2015 |
Jang S, Montoya-Castillo A. Charge Hopping Dynamics along a Disordered Chain in Quantum Environments: Comparative Study of Different Rate Kernels. The Journal of Physical Chemistry. B. 119: 7659-65. PMID 25803833 DOI: 10.1021/Jp511933M |
0.686 |
|
2014 |
Jang S, Hoyer S, Fleming G, Whaley KB. Generalized master equation with non-Markovian multichromophoric Förster resonance energy transfer for modular exciton densities. Physical Review Letters. 113: 188102. PMID 25396397 DOI: 10.1103/Physrevlett.113.188102 |
0.461 |
|
2014 |
Jang S, Sinitskiy AV, Voth GA. Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics? Journal of Chemical Physics. 140. DOI: 10.1063/1.4870717 |
0.487 |
|
2013 |
Kumar P, Jang S. Emission lineshapes of the B850 band of light-harvesting 2 (LH2) complex in purple bacteria: a second order time-nonlocal quantum master equation approach. The Journal of Chemical Physics. 138: 135101. PMID 23574256 DOI: 10.1063/1.4795824 |
0.416 |
|
2013 |
Jang S, Berkelbach TC, Reichman DR. Coherent quantum dynamics in donor-bridge-acceptor systems: Beyond the hopping and super-exchange mechanisms New Journal of Physics. 15. DOI: 10.1088/1367-2630/15/10/105020 |
0.579 |
|
2012 |
Jang S. Nonadiabatic quantum Liouville and master equations in the adiabatic basis. The Journal of Chemical Physics. 137: 22A536. PMID 23249073 DOI: 10.1063/1.4748142 |
0.479 |
|
2012 |
Yang L, Devi M, Jang S. Polaronic quantum master equation theory of inelastic and coherent resonance energy transfer for soft systems. The Journal of Chemical Physics. 137: 024101. PMID 22803522 DOI: 10.1063/1.4732309 |
0.477 |
|
2012 |
Jang S. Multistep quantum master equation theory for response functions in four wave mixing electronic spectroscopy of multichromophoric macromolecules Bulletin of the Korean Chemical Society. 33: 997-1008. DOI: 10.5012/Bkcs.2012.33.3.997 |
0.445 |
|
2012 |
Jang S. Nonadiabatic quantum Liouville and master equations in the adiabatic basis Journal of Chemical Physics. 137. DOI: 10.1063/1.4748142 |
0.389 |
|
2012 |
Jang S, Cheng Y. Resonance energy flow dynamics of coherently delocalized excitons in biological and macromolecular systems: Recent theoretical advances and open issues Wiley Interdisciplinary Reviews: Computational Molecular Science. 3: 84-104. DOI: 10.1002/Wcms.1111 |
0.367 |
|
2011 |
Jang S. Theory of multichromophoric coherent resonance energy transfer: A polaronic quantum master equation approach Journal of Chemical Physics. 135. PMID 21786985 DOI: 10.1063/1.3608914 |
0.459 |
|
2010 |
Yang L, Caprasecca S, Mennucci B, Jang S. Theoretical investigation of the mechanism and dynamics of intramolecular coherent resonance energy transfer in soft molecules: a case study of dithia-anthracenophane. Journal of the American Chemical Society. 132: 16911-21. PMID 21050006 DOI: 10.1021/Ja103303U |
0.427 |
|
2009 |
Jang S. Theory of coherent resonance energy transfer for coherent initial condition. The Journal of Chemical Physics. 131: 164101. PMID 19894921 DOI: 10.1063/1.3247899 |
0.461 |
|
2009 |
Jang S. Theory of coherent resonance energy transfer for coherent initial condition Journal of Chemical Physics. 131. DOI: 10.1063/1.3247899 |
0.37 |
|
2008 |
Jang S, Cheng YC, Reichman DR, Eaves JD. Theory of coherent resonance energy transfer. The Journal of Chemical Physics. 129: 101104. PMID 19044901 DOI: 10.1063/1.2977974 |
0.617 |
|
2007 |
Jang S. Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling. The Journal of Chemical Physics. 127: 174710. PMID 17994845 DOI: 10.1063/1.2779031 |
0.469 |
|
2007 |
Jang S, Newton MD, Silbey RJ. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria. The Journal of Physical Chemistry. B. 111: 6807-14. PMID 17439170 DOI: 10.1021/Jp070111L |
0.351 |
|
2007 |
Jang S. Generalization of the Förster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling Journal of Chemical Physics. 127. DOI: 10.1063/1.2779031 |
0.378 |
|
2006 |
Jang S, Newton MD. Closed-form expressions of quantum electron transfer rate based on the stationary-phase approximation. The Journal of Physical Chemistry. B. 110: 18996-9003. PMID 16986895 DOI: 10.1021/Jp061329V |
0.424 |
|
2006 |
Jang S. Path-integral centroid dynamics for general initial conditions: a nonequilibrium projection operator formulation. The Journal of Chemical Physics. 124: 64107. PMID 16483196 DOI: 10.1063/1.2162887 |
0.406 |
|
2006 |
Jang S. Path-integral centroid dynamics for general initial conditions: A nonequilibrium projection operator formulation Journal of Chemical Physics. 124. DOI: 10.1063/1.2162887 |
0.301 |
|
2005 |
Jang S, Newton MD. Theory of torsional non-Condon electron transfer: a generalized spin-boson Hamiltonian and its nonadiabatic limit solution. The Journal of Chemical Physics. 122: 024501. PMID 15638592 DOI: 10.1063/1.1828431 |
0.393 |
|
2004 |
Jang S, Newton MD, Silbey RJ. Multichromophoric Förster resonance energy transfer. Physical Review Letters. 92: 218301. PMID 15245322 DOI: 10.1103/Physrevlett.92.218301 |
0.343 |
|
2003 |
Jang S, Silbey RJ. Single complex line shapes of the B850 band of LH2 Journal of Chemical Physics. 118: 9324-9336. DOI: 10.1063/1.1569240 |
0.367 |
|
2003 |
Jang S, Silbey RJ. Theory of single molecule line shapes of multichromophoric macromolecules Journal of Chemical Physics. 118: 9312-9323. DOI: 10.1063/1.1569239 |
0.378 |
|
2002 |
Jang S, Cao J, Silbey RJ. Erratum: “Fourth-order quantum master equation and its Markovian bath limit” [J. Chem. Phys. 116, 2705 (2002)] The Journal of Chemical Physics. 117: 10428-10428. DOI: 10.1063/1.1519534 |
0.406 |
|
2002 |
Jang S, Cao J, Silbey RJ. Fourth-order quantum master equation and its Markovian bath limit Journal of Chemical Physics. 116: 2705-2717. DOI: 10.1063/1.1445105 |
0.415 |
|
2002 |
Jang S, Cao J, Silbey RJ. On the temperature dependence of molecular line shapes due to linearly coupled phonon bands Journal of Physical Chemistry B. 106: 8313-8317. DOI: 10.1021/Jp0208440 |
0.324 |
|
2001 |
Jang S, Cao J. Nonadiabatic instanton calculation of multistate electron transfer reaction rate: Interference effects in three and four states systems The Journal of Chemical Physics. 114: 9959-9968. DOI: 10.1063/1.1371262 |
0.378 |
|
2001 |
Dempster SE, Jang S, Silbey RJ. Single molecule spectroscopy of disordered circular aggregates: A perturbation analysis Journal of Chemical Physics. 114: 10015-10023. DOI: 10.1063/1.1369159 |
0.308 |
|
2001 |
Jang S, Voth GA. Erratum: “A relationship between centroid dynamics and path integral quantum transition state theory” [J. Chem. Phys. 112, 8747 (2000)] The Journal of Chemical Physics. 114: 1944-1944. DOI: 10.1063/1.1336574 |
0.418 |
|
2000 |
Reichman DR, Roy P, Jang S, Voth GA. A Feynman path centroid dynamics approach for the computation of time correlation functions involving nonlinear operators Journal of Chemical Physics. 113: 919-929. DOI: 10.1063/1.481872 |
0.566 |
|
2000 |
Jang S, Voth GA. A relationship between centroid dynamics and path integral quantum transition state theory The Journal of Chemical Physics. 112: 8747-8757. DOI: 10.1063/1.481490 |
0.472 |
|
2000 |
Reichman DR, Roy PN, Jang S, Voth GA. A Feynman path centroid dynamics approach for the computation of time correlation functions involving nonlinear operators Journal of Chemical Physics. 113: 919-929. |
0.479 |
|
1999 |
Roy P, Jang S, Voth GA. Feynman path centroid dynamics for Fermi–Dirac statistics The Journal of Chemical Physics. 111: 5303-5305. DOI: 10.1063/1.479789 |
0.464 |
|
1999 |
Jang S, Voth GA. A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables The Journal of Chemical Physics. 111: 2371-2384. DOI: 10.1063/1.479515 |
0.402 |
|
1999 |
Jang S, Voth GA. Path integral centroid variables and the formulation of their exact real time dynamics The Journal of Chemical Physics. 111: 2357-2370. DOI: 10.1063/1.479514 |
0.463 |
|
1999 |
Jang S, Voth GA. Response to “Comment on ‘Simple reversible molecular dynamics algorithms for Nosé–Hoover chain dynamics’ ” [J. Chem. Phys. 110, 3623 (1999)] The Journal of Chemical Physics. 110: 3626-3628. DOI: 10.1063/1.478232 |
0.305 |
|
1999 |
Jang S, Schwieters CD, Voth GA. A Modification of Path Integral Quantum Transition State Theory for Asymmetric and Metastable Potentials The Journal of Physical Chemistry A. 103: 9527-9538. DOI: 10.1021/Jp992190+ |
0.434 |
|
1999 |
Jang S, Jang S, Voth GA. Quantum Molecular Dynamics Simulations of Low-Temperature High Energy Density Matter: Solid p-H2/Li and p-H2/B Journal of Physical Chemistry A. 103: 9512-9520. DOI: 10.1021/Jp992098D |
0.344 |
|
1998 |
Jang S, Voth GA. Lithium impurity recombination in solid para-hydrogen: A path integral quantum transition state theory study The Journal of Chemical Physics. 108: 4098-4106. DOI: 10.1063/1.475807 |
0.444 |
|
1997 |
Jang S, Voth GA. Simple reversible molecular dynamics algorithms for Nosé–Hoover chain dynamics The Journal of Chemical Physics. 107: 9514-9526. DOI: 10.1063/1.475247 |
0.316 |
|
1995 |
Jang S, Shin KJ, Lee S. Effects of excitation migration and translational diffusion in the luminescence quenching dynamics The Journal of Chemical Physics. 102: 815-827. DOI: 10.1063/1.469196 |
0.306 |
|
1991 |
Jang S. Quantal Brownian motion from second RPA dynamics at finite temperature: Explicit density operator and related quantities Physica a: Statistical Mechanics and Its Applications. 175: 420-434. DOI: 10.1016/0378-4371(91)90241-4 |
0.354 |
|
Show low-probability matches. |