Felix T. Hong - Publications

Affiliations: 
Wayne State University, Detroit, MI, United States 
Area:
Computer Science, Molecular Biology, Electronics and Electrical Engineering

24 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2015 Hong FT. Free will: A case study in reconciling phenomenological philosophy with reductionist sciences. Progress in Biophysics and Molecular Biology. 119: 670-726. PMID 26276463 DOI: 10.1016/J.Pbiomolbio.2015.08.008  0.307
2011 Hong FT. Photovoltaic solar energy conversion in biomembranes: General principles and model system studies Advances in Planar Lipid Bilayers and Liposomes. 13: 103-168. DOI: 10.1016/B978-0-12-387721-5.00004-3  0.448
1999 Hong FT. Interfacial photochemistry of retinal proteins Progress in Surface Science. 62: 1-237. DOI: 10.1016/S0079-6816(99)00014-3  0.431
1998 Petrak MR, Hong FT. Component analysis of the fast photoelectric signal from model bacteriorhodopsin membranes: V. Effects of chloride ion transport blockers and divalent cation chelators Bioelectrochemistry and Bioenergetics. 45: 193-201. DOI: 10.1016/S0302-4598(97)00068-8  0.359
1997 Hong FT. Molecular sensors based on the photoelectric effect of bacteriorhodopsin: Origin of differential responsivity Materials Science and Engineering C. 4: 267-285. DOI: 10.1016/S0928-4931(97)00011-8  0.39
1995 Hong FT. Fundamentals of photoelectric effects in molecular electronic thin film devices: applications to bacteriorhodopsin-based devices Biosystems. 35: 117-121. PMID 7488699 DOI: 10.1016/0303-2647(94)01497-U  0.4
1995 Fuller BE, Okajima TL, Hong FT. Analysis of the d.c. photoelectric signal from model bacteriorhodopsin membranes: d.c. photoconductivity determination by the null current method and the effect of proton ionophores Bioelectrochemistry and Bioenergetics. 37: 109-124. DOI: 10.1016/0302-4598(95)05020-9  0.42
1995 Hong FH, Hong FT. Component analysis of the fast photoelectric signal from model bacteriorhodopsin membranes part 4. A method for isolating the B2 component and the evidence for its polarity reversal at low pH Bioelectrochemistry and Bioenergetics. 37: 91-99. DOI: 10.1016/0302-4598(94)05018-P  0.361
1994 Hong FT. Photovoltaic Effects in Biomembranes Ieee Engineering in Medicine and Biology Magazine. 13: 75-93. DOI: 10.1109/51.265777  0.392
1994 Hong FH, Chang M, Ni B, Needleman RB, Hong FT. Component analysis of the fast photoelectric signal from model bacteriorhodopsin membranes. Part III. Effect of the point mutation aspartate 212 → asparagine 212 Bioelectrochemistry and Bioenergetics. 33: 151-158. DOI: 10.1016/0302-4598(94)85006-2  0.356
1994 Okajima TL, Michaile S, McCoy LE, Hong FT. Component analysis of the fast photoelectric signal from model bacteriorhodopsin membranes. Part II. Effect of fluorescamine treatment Bioelectrochemistry and Bioenergetics. 33: 143-149. DOI: 10.1016/0302-4598(94)85005-4  0.39
1994 Michaile S, Hong FT. Component analysis of the fast photoelectric signal from model bacteriorhodopsin membranes. Part 1. Effect of multilayer stacking and prolonged drying Bioelectrochemistry and Bioenergetics. 33: 135-142. DOI: 10.1016/0302-4598(94)85004-6  0.348
1993 Hong FH, Chang M, Ni B, Needleman RB, Hong FT. Genetically Modified Bacteriorhodopsin as a Bioelectronic Material Mrs Proceedings. 330. DOI: 10.1557/Proc-330-257  0.304
1987 Hong FT. Effect of Local Conditions on Heterogeneous Reactions in the Bacteriorhodopsin Membrane: An Electrochemical View Journal of the Electrochemical Society. 134: 3044-3052. DOI: 10.1149/1.2100337  0.404
1986 Okajima TL, Hong FT. Kinetic analysis of displacement photocurrents elicited in two types of bacteriorhodopsin model membranes Biophysical Journal. 50: 901-912. PMID 3790693 DOI: 10.1016/S0006-3495(86)83531-7  0.436
1986 Hong FT. The bacteriorhodopsin model membrane system as a prototype molecular computing element Biosystems. 19: 223-236. PMID 3779047 DOI: 10.1016/0303-2647(86)90041-9  0.447
1979 Hong FT, Montal M. Bacteriorhodopsin in model membranes. A new component of the displacement photocurrent in the microsecond time scale. Biophysical Journal. 25: 465-72. PMID 45397 DOI: 10.1016/S0006-3495(79)85316-3  0.439
1978 Hong FT. 234 - Mechanisms of generation of the early receptor potential revisited Bioelectrochemistry and Bioenergetics. 5: 425-455. DOI: 10.1016/0302-4598(87)85039-0  0.359
1977 Hong FT. Photoelectric and magneto-orientation effects in pigmented biological membranes Journal of Colloid and Interface Science. 58: 471-497. DOI: 10.1016/0021-9797(77)90158-8  0.472
1976 Hong FT. Charge transfer across pigmented bilayer lipid membrane and its interfaces Photochemistry and Photobiology. 24: 155-189. PMID 792911 DOI: 10.1111/J.1751-1097.1976.Tb06809.X  0.464
1976 Hong FT, Mauzerall D. Tunable Voltage Clamp Method: Application to Photoelectric Effects in Pigmented Bilayer Lipid Membranes Journal of the Electrochemical Society. 123: 1317-1324. DOI: 10.1149/1.2133068  0.417
1974 Hong FT, Mauzerall D. Interfacial photoreactions and chemical capacitance in lipid bilayers Proceedings of the National Academy of Sciences of the United States of America. 71: 1564-1568. PMID 4524660 DOI: 10.1073/Pnas.71.4.1564  0.401
1972 Hong FT, Mauzerall D. The separation of voltage-dependent photoemfs and conductances in Rudin-Mueller membranes containing magnesium porphyrins Bba - Bioenergetics. 275: 479-484. PMID 5070062 DOI: 10.1016/0005-2728(72)90232-0  0.382
1972 Hong FT, Mauzerall D. Photoemf at a single membrane-solution interface specific to lipid bilayers containing magnesium porphyrins Nature New Biology. 240: 154-155. PMID 4509029 DOI: 10.1038/Newbio240154A0  0.425
Show low-probability matches.