Year |
Citation |
Score |
2024 |
Golden DL, Flynn KM, Aikonen S, Hanneman CM, Kalyani D, Krska SW, Paton RS, Stahl SS. Radical Chlorination of Non-Resonant Heterobenzylic C-H Bonds and High-Throughput Diversification of Heterocycles. Chem. 10: 1593-1605. PMID 39108591 DOI: 10.1016/j.chempr.2024.04.001 |
0.624 |
|
2024 |
Hoque MA, Jiang T, Poole DL, Stahl SS. Manganese-Mediated Electrochemical Oxidation of Thioethers to Sulfoxides Using Water as the Source of Oxygen Atoms. Journal of the American Chemical Society. PMID 39042816 DOI: 10.1021/jacs.4c07058 |
0.352 |
|
2024 |
Hanneman CM, Twilton J, Hall MN, Goodwin NC, Elward JM, Lynch-Colameta T, Stahl SS. Copper-Nitroxyl-Catalyzed α-Oxygenation of Cyclic Secondary Amines Including Application to Late-Stage Functionalization. Journal of the American Chemical Society. PMID 38743876 DOI: 10.1021/jacs.4c04359 |
0.799 |
|
2024 |
Hall MN, Lee M, Root TW, Davies HML, Stahl SS. Heterogeneous Fe-N-C Catalyst for Aerobic Dehydrogenation of Hydrazones to Diazo Compounds Used for Carbene Transfer. Journal of the American Chemical Society. PMID 38717594 DOI: 10.1021/jacs.4c04430 |
0.325 |
|
2024 |
King DS, Wang F, Gerken JB, Gaggioli CA, Guzei IA, Kim YJ, Stahl SS, Gagliardi L. Divergent Bimetallic Mechanisms in Copper(II)-Mediated C-C, N-N, and O-O Oxidative Coupling Reactions. Journal of the American Chemical Society. PMID 38284769 DOI: 10.1021/jacs.3c13649 |
0.316 |
|
2024 |
Rafiee M, Abrams DJ, Cardinale L, Goss Z, Romero-Arenas A, Stahl SS. Cyclic voltammetry and chronoamperometry: mechanistic tools for organic electrosynthesis. Chemical Society Reviews. 53: 566-585. PMID 38050749 DOI: 10.1039/d2cs00706a |
0.59 |
|
2023 |
Chen SJ, He CQ, Kong M, Wang J, Lin S, Krska SW, Stahl SS. Accessing three-dimensional molecular diversity through benzylic C-H cross-coupling. Nature Synthesis. 2: 998-1008. PMID 38463240 DOI: 10.1038/s44160-023-00332-4 |
0.6 |
|
2023 |
Mandal M, Buss JA, Chen SJ, Cramer CJ, Stahl SS. Mechanistic insights into radical formation and functionalization in copper/-fluorobenzenesulfonimide radical-relay reactions. Chemical Science. 15: 1364-1373. PMID 38274066 DOI: 10.1039/d3sc03597b |
0.646 |
|
2023 |
Chen SJ, Krska SW, Stahl SS. Copper-Catalyzed Benzylic C-H Cross-Coupling Enabled by Redox Buffers: Expanding Synthetic Access to Three-Dimensional Chemical Space. Accounts of Chemical Research. 56: 3604-3615. PMID 38051914 DOI: 10.1021/acs.accounts.3c00580 |
0.682 |
|
2023 |
Maity S, Lopez MA, Bates DM, Lin S, Krska SW, Stahl SS. Polar Heterobenzylic C(sp)-H Chlorination Pathway Enabling Efficient Diversification of Aromatic Nitrogen Heterocycles. Journal of the American Chemical Society. PMID 37642292 DOI: 10.1021/jacs.3c05822 |
0.803 |
|
2023 |
Twilton J, Johnson MR, Sidana V, Franke MC, Bottecchia C, Lehnherr D, Lévesque F, Knapp SMM, Wang L, Gerken JB, Hong CM, Vickery TP, Weisel MD, Strotman NA, Weix DJ, ... ... Stahl SS, et al. Quinone-mediated hydrogen anode for non-aqueous reductive electrosynthesis. Nature. PMID 37604186 DOI: 10.1038/s41586-023-06534-2 |
0.818 |
|
2023 |
Stamoulis AG, Bruns DL, Stahl SS. Optimizing the Synthetic Potential of O: Implications of Overpotential in Homogeneous Aerobic Oxidation Catalysis. Journal of the American Chemical Society. 145: 17515-17526. PMID 37534994 DOI: 10.1021/jacs.3c02887 |
0.477 |
|
2023 |
Golden DL, Zhang C, Chen SJ, Vasilopoulos A, Guzei IA, Stahl SS. Benzylic C-H Esterification with Limiting C-H Substrate Enabled by Photochemical Redox Buffering of the Cu Catalyst. Journal of the American Chemical Society. PMID 37084265 DOI: 10.1021/jacs.3c01662 |
0.342 |
|
2023 |
Su ZM, Twilton J, Hoyt CB, Wang F, Stanley L, Mayes HB, Kang K, Weix DJ, Beckham GT, Stahl SS. Ni- and Ni/Pd-Catalyzed Reductive Coupling of Lignin-Derived Aromatics to Access Biobased Plasticizers. Acs Central Science. 9: 159-165. PMID 36844489 DOI: 10.1021/acscentsci.2c01324 |
0.813 |
|
2022 |
Franke MC, Longley VR, Rafiee M, Stahl SS, Hansen EC, Weix DJ. Zinc-Free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell. Acs Catalysis. 12: 12617-12626. PMID 37065181 DOI: 10.1021/acscatal.2c03033 |
0.64 |
|
2022 |
Bruns DL, Stahl SS. Thermodynamic-Kinetic Comparison of Palladium(II)-Mediated Alcohol and Hydroquinone Oxidation. Organometallics. 41: 3161-3166. PMID 36776986 DOI: 10.1021/acs.organomet.2c00017 |
0.438 |
|
2022 |
Michael KH, Su ZM, Wang R, Sheng H, Li W, Wang F, Stahl SS, Jin S. Pairing of Aqueous and Nonaqueous Electrosynthetic Reactions Enabled by a Redox Reservoir Electrode. Journal of the American Chemical Society. PMID 36451553 DOI: 10.1021/jacs.2c09632 |
0.346 |
|
2022 |
Goes SL, Nutting JE, Hill NJ, Stahl SS, Rafiee M. Exploring Electrosynthesis: Bulk Electrolysis and Cyclic Voltammetry Analysis of the Shono Oxidation. Journal of Chemical Education. 99: 3242-3248. PMID 36277842 DOI: 10.1021/acs.jchemed.2c00221 |
0.559 |
|
2022 |
Bates JS, Khamespanah F, Cullen DA, Al-Omari AA, Hopkins MN, Martinez JJ, Root TW, Stahl SS. Molecular Catalyst Synthesis Strategies to Prepare Atomically Dispersed Fe-N-C Heterogeneous Catalysts. Journal of the American Chemical Society. PMID 36215721 DOI: 10.1021/jacs.2c08884 |
0.767 |
|
2022 |
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chemical Reviews. PMID 36198176 DOI: 10.1021/acs.chemrev.2c00424 |
0.812 |
|
2022 |
Hoque MA, Twilton J, Zhu J, Graaf MD, Harper KC, Tuca E, DiLabio GA, Stahl SS. Electrochemical PINOylation of Methylarenes: Improving the Scope and Utility of Benzylic Oxidation through Mediated Electrolysis. Journal of the American Chemical Society. PMID 35972068 DOI: 10.1021/jacs.2c05974 |
0.809 |
|
2022 |
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nature Reviews. Chemistry. 6: 405-427. PMID 35965690 DOI: 10.1038/s41570-022-00388-4 |
0.765 |
|
2022 |
Howland WC, Gerken JB, Stahl SS, Surendranath Y. Thermal Hydroquinone Oxidation on Co/N-doped Carbon Proceeds by a Band-Mediated Electrochemical Mechanism. Journal of the American Chemical Society. PMID 35699525 DOI: 10.1021/jacs.2c02746 |
0.39 |
|
2022 |
Bates JS, Biswas S, Suh SE, Johnson MR, Mondal B, Root TW, Stahl SS. Chemical and Electrochemical O Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis. Journal of the American Chemical Society. PMID 34985869 DOI: 10.1021/jacs.1c11126 |
0.818 |
|
2021 |
Lopez MA, Buss JA, Stahl SS. Cu-Catalyzed Site-Selective Benzylic Chlorination Enabling Net C-H Coupling with Oxidatively Sensitive Nucleophiles. Organic Letters. PMID 34965136 DOI: 10.1021/acs.orglett.1c04038 |
0.656 |
|
2021 |
Luo H, Weeda EP, Alherech M, Anson CW, Karlen SD, Cui Y, Foster CE, Stahl SS. Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. Journal of the American Chemical Society. 143: 15462-15470. PMID 34498845 DOI: 10.1021/jacs.1c08635 |
0.349 |
|
2021 |
Chen SJ, Golden DL, Krska SW, Stahl SS. Copper-Catalyzed Cross-Coupling of Benzylic C-H Bonds and Azoles with Controlled -Site Selectivity. Journal of the American Chemical Society. PMID 34464528 DOI: 10.1021/jacs.1c07117 |
0.617 |
|
2021 |
Kozack CV, Tereniak SJ, Jaworski JN, Li B, Bruns DL, Knapp SMM, Landis CR, Stahl SS. Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc)-Catalyzed Aerobic Allylic Acetoxylation in the Absence and Presence of a Co(salophen) Cocatalyst. Acs Catalysis. 11: 6363-6370. PMID 34422447 DOI: 10.1021/acscatal.1c01074 |
0.431 |
|
2021 |
Stamoulis AG, Geng P, Schmidt MA, Eastgate MD, Borovika A, Fraunhoffer KJ, Stahl SS. Sustainable Pd(OAc)2 Hydroquinone Cocatalyst System for Cis-Selective Dibenzoyloxylation of 1,3-Cyclohexadiene. Angewandte Chemie (International Ed. in English). PMID 34399005 DOI: 10.1002/anie.202108499 |
0.318 |
|
2021 |
Suh SE, Nkulu LE, Lin S, Krska SW, Stahl SS. Benzylic C-H isocyanation/amine coupling sequence enabling high-throughput synthesis of pharmaceutically relevant ureas. Chemical Science. 12: 10380-10387. PMID 34377424 DOI: 10.1039/d1sc02049h |
0.802 |
|
2021 |
Wang D, Salazar CA, Stahl SS. Catalyst-Controlled Regioselectivity in Pd-Catalyzed Aerobic Oxidative Arylation of Indoles. Organometallics. 40: 2198-2203. PMID 34366539 DOI: 10.1021/acs.organomet.1c00139 |
0.621 |
|
2021 |
Goes SL, Mayer MN, Nutting JE, Hoober-Burkhardt LE, Stahl SS, Rafiee M. Deriving the Turnover Frequency of Aminoxyl-Catalyzed Alcohol Oxidation by Chronoamperometry: An Introduction to Organic Electrocatalysis. Journal of Chemical Education. 98: 600-606. PMID 34366442 DOI: 10.1021/acs.jchemed.0c01244 |
0.596 |
|
2021 |
Nutting JE, Mao K, Stahl SS. Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. Journal of the American Chemical Society. PMID 34232661 DOI: 10.1021/jacs.1c05224 |
0.38 |
|
2021 |
Vasilopoulos A, Krska SW, Stahl SS. C(sp)-H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science (New York, N.Y.). 372: 398-403. PMID 33888639 DOI: 10.1126/science.abh2623 |
0.607 |
|
2020 |
Anson CW, Ghosh S, Hammes-Schiffer S, Stahl SS. Correction to "Co(salophen)-Catalyzed Aerobic Oxidation of -Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis". Journal of the American Chemical Society. PMID 33319551 DOI: 10.1021/jacs.0c11959 |
0.323 |
|
2020 |
Salazar CA, Flesch KN, Haines BE, Zhou PS, Musaev DG, Stahl SS. Tailored quinones support high-turnover Pd catalysts for oxidative C-H arylation with O. Science (New York, N.Y.). PMID 33214286 DOI: 10.1126/science.abd1085 |
0.506 |
|
2020 |
Bruns DL, Musaev DG, Stahl SS. Can Donor Ligands Make Pd(OAc) a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Redox Equilibria. Journal of the American Chemical Society. PMID 33167610 DOI: 10.1021/jacs.0c09464 |
0.381 |
|
2020 |
Tereniak SJ, Bruns DL, Stahl SS. Pd-Catalyzed Aerobic Oxidative Coupling of Thiophenes: Synergistic Benefits of Phenanthroline Dione and a Cu Cocatalyst. Journal of the American Chemical Society. PMID 33155814 DOI: 10.1021/jacs.0c09962 |
0.427 |
|
2020 |
Preger Y, Johnson MR, Biswas S, Anson CW, Root TW, Stahl SS. Anthraquinone-Mediated Fuel Cell Anode with an Off-Electrode Heterogeneous Catalyst Accessing High Power Density when Paired with a Mediated Cathode. Acs Energy Letters. 5: 1407-1412. PMID 32856004 DOI: 10.1021/Acsenergylett.0C00631 |
0.399 |
|
2020 |
Vasilopoulos A, Golden DL, Buss JA, Stahl SS. Copper-Catalyzed C-H Fluorination/Functionalization Sequence Enabling Benzylic C-H Cross Coupling with Diverse Nucleophiles. Organic Letters. 22: 5753-5757. PMID 32790420 DOI: 10.1021/Acs.Orglett.0C02238 |
0.65 |
|
2020 |
Buss JA, Vasilopoulos A, Golden DL, Stahl SS. Copper-Catalyzed Functionalization of Benzylic C-H Bonds with -Fluorobenzenesulfonimide: Switch from C-N to C-F Bond Formation Promoted by a Redox Buffer and Brønsted Base. Organic Letters. 22: 5749-5752. PMID 32790419 DOI: 10.1021/Acs.Orglett.0C02239 |
0.671 |
|
2020 |
Klinger GE, Zhou Y, Foote JA, Wester AM, Cui Y, Alherech M, Stahl SS, Jackson JE, Hegg EL. Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin. Chemsuschem. PMID 32668064 DOI: 10.1002/Cssc.202001238 |
0.325 |
|
2020 |
Suh SE, Chen SJ, Mandal M, Guzei IA, Cramer CJ, Stahl SS. Site-Selective Copper-Catalyzed Azidation of Benzylic C-H Bonds. Journal of the American Chemical Society. PMID 32539355 DOI: 10.1021/Jacs.0C05362 |
0.765 |
|
2020 |
Wang F, Gerken JB, Bates DM, Kim YJ, Stahl SS. Electrochemical Strategy for Hydrazine Synthesis: Development and Overpotential Analysis of Methods for Oxidative N-N Coupling of an Ammonia Surrogate. Journal of the American Chemical Society. PMID 32520537 DOI: 10.1021/Jacs.0C04626 |
0.445 |
|
2020 |
Hu H, Chen SJ, Mandal M, Pratik SM, Buss JA, Krska SW, Cramer CJ, Stahl SS. Copper-catalysed benzylic C-H coupling with alcohols via radical relay enabled by redox buffering. Nature Catalysis. 3: 358-367. PMID 32368720 DOI: 10.1038/s41929-020-0425-1 |
0.775 |
|
2020 |
Anson CW, Stahl SS. Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O and Oxidation of H, Alcohols, Biomass, and Complex Fuels. Chemical Reviews. PMID 32216295 DOI: 10.1021/Acs.Chemrev.9B00717 |
0.389 |
|
2020 |
Li Y, Karlen SD, Demir B, Kim H, Luterbacher J, Dumesic JA, Stahl SS, Ralph J. Mechanistic study of diaryl ether bond cleavage during palladium-catalyzed lignin hydrogenolysis. Chemsuschem. PMID 32202385 DOI: 10.1002/Cssc.202000753 |
0.326 |
|
2020 |
Salazar CA, Gair JJ, Flesch KN, Guzei IA, Lewis JC, Stahl SS. Catalytic Behavior of Mono-N-Protected Amino Acid Ligands in Ligand-Accelerated C-H Activation by Palladium(II). Angewandte Chemie (International Ed. in English). PMID 32196853 DOI: 10.1002/Anie.202002484 |
0.429 |
|
2020 |
Wang F, Stahl SS. Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators. Accounts of Chemical Research. PMID 32049487 DOI: 10.1021/Acs.Accounts.9B00544 |
0.517 |
|
2020 |
Gerken JB, Stamoulis A, Suh SE, Fischer ND, Kim YJ, Guzei IA, Stahl SS. Efficient electrochemical synthesis of robust, densely functionalized water soluble quinones. Chemical Communications (Cambridge, England). PMID 31898720 DOI: 10.1039/C9Cc08878D |
0.778 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/C9Sc04305E |
0.453 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N–N bonds Chemical Science. 11: 1170-1175. DOI: 10.1039/c9sc04305e |
0.344 |
|
2020 |
Wang Y, Mondal B, Stahl SS. Molecular Cobalt Catalysts for O2 Reduction to H2O2: Benchmarking Catalyst Performance via Rate–Overpotential Correlations Acs Catalysis. DOI: 10.1021/Acscatal.0C02197 |
0.465 |
|
2020 |
Konnick MM, Knapp SM, Stahl SS. Mechanism of the reaction of an NHC-coordinated palladium(II)-hydride with O2 in acetonitrile Polyhedron. 182: 114501. DOI: 10.1016/J.Poly.2020.114501 |
0.716 |
|
2020 |
Konnick MM, Knapp SM, Stahl SS. Mechanism of the reaction of an NHC-coordinated palladium(II)-hydride with O2 in acetonitrile Polyhedron. 182: 114501. DOI: 10.1016/J.Poly.2020.114501 |
0.716 |
|
2020 |
Konnick MM, Knapp SM, Stahl SS. Mechanism of the reaction of an NHC-coordinated palladium(II)-hydride with O2 in acetonitrile Polyhedron. 182: 114501. DOI: 10.1016/J.Poly.2020.114501 |
0.716 |
|
2020 |
Konnick MM, Knapp SM, Stahl SS. Mechanism of the reaction of an NHC-coordinated palladium(II)-hydride with O2 in acetonitrile Polyhedron. 182: 114501. DOI: 10.1016/J.Poly.2020.114501 |
0.716 |
|
2019 |
Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM, Martinelli JR, Stahl SS. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N-N bonds. Chemical Science. 11: 1170-1175. PMID 34084374 DOI: 10.1039/c9sc04305e |
0.354 |
|
2019 |
Das A, Nutting JE, Stahl SS. Electrochemical C-H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chemical Science. 10: 7542-7548. PMID 31588305 DOI: 10.1039/C9Sc02609F |
0.504 |
|
2019 |
Rafiee M, Alherech M, Karlen SD, Stahl SS. Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. Journal of the American Chemical Society. PMID 31483640 DOI: 10.1021/Jacs.9B07243 |
0.674 |
|
2019 |
Ryan MC, Whitmire LD, McCann SD, Stahl SS. Copper/TEMPO Redox Redux: Analysis of PCET Oxidation of TEMPOH by Copper(II) and the Reaction of TEMPO with Copper(I). Inorganic Chemistry. PMID 31283193 DOI: 10.1021/Acs.Inorgchem.9B01326 |
0.526 |
|
2019 |
Wang YH, Schneider PE, Goldsmith ZK, Mondal B, Hammes-Schiffer S, Stahl SS. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O Reduction with a Mononuclear Cobalt Porphyrin Catalyst. Acs Central Science. 5: 1024-1034. PMID 31263762 DOI: 10.1021/Acscentsci.9B00194 |
0.615 |
|
2019 |
Beller M, Shi F, Stahl SS. Preface to Special Issue of ChemSusChem: Sustainable Organic Synthesis. Chemsuschem. PMID 31250949 DOI: 10.1002/Cssc.201901625 |
0.379 |
|
2019 |
Piszel PE, Vasilopoulos A, Stahl SS. Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines using Aerobic Copper/Nitroxyl Catalysis. Angewandte Chemie (International Ed. in English). PMID 31206988 DOI: 10.1002/Anie.201906130 |
0.523 |
|
2019 |
Jaworski JN, Kozack CV, Tereniak SJ, Knapp SMM, Landis CR, Miller JT, Stahl SS. Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C-H Acetoxylation Catalyzed by Pd(OAc)2/4,5-Diazafluoren-9-one. Journal of the American Chemical Society. PMID 31184479 DOI: 10.1021/Jacs.9B04699 |
0.561 |
|
2019 |
Kozack CV, Sowin JA, Jaworski JN, Iosub AV, Stahl SS. Aerobic Acyloxylation of Allylic C-H Bonds Initiated by a Pd0 Precatalyst with 4,5-Diazafluoren-9-one as an Ancillary Ligand. Chemsuschem. PMID 31107593 DOI: 10.1002/Cssc.201900727 |
0.516 |
|
2019 |
Wang F, Stahl SS. Merging Photochemistry with Electrochemistry: Functional Group Tolerant Electrochemical Amination of sp³ C-H Bonds. Angewandte Chemie (International Ed. in English). PMID 30763466 DOI: 10.1002/Anie.201813960 |
0.355 |
|
2019 |
Li B, Wendlandt AE, Stahl SS. Replacement of Stoichiometric DDQ with a Low Potential o-Quinone Catalyst Enabling Aerobic Dehydrogenation of Tertiary Indolines in Pharmaceutical Intermediates. Organic Letters. PMID 30702297 DOI: 10.1021/Acs.Orglett.9B00111 |
0.784 |
|
2019 |
Singh SK, Savoy AW, Yuan Z, Luo H, Stahl SS, Hegg EL, Hodge DB. Integrated Two-Stage Alkaline-Oxidative Pretreatment of Hybrid Poplar. Part 1: Impact of Alkaline Pre-Extraction Conditions on Process Performance and Lignin Properties Industrial & Engineering Chemistry Research. 58: 15989-15999. DOI: 10.1021/Acs.Iecr.9B01124 |
0.324 |
|
2018 |
Preger Y, Root TW, Stahl SS. Platinum-Based Heterogeneous Catalysts for Nitrile Synthesis via Aerobic Oxidative Coupling of Alcohols and Ammonia. Acs Omega. 3: 6091-6096. PMID 31458796 DOI: 10.1021/acsomega.8b00911 |
0.365 |
|
2018 |
Lennox AJ, Goes SL, Webster MP, Koolman HF, Djuric SW, Stahl SS. Electrochemical ABNO-Mediated Alpha-Cyanation of Secondary Piperidines for Pharmaceutical Building Block Diversification. Journal of the American Chemical Society. PMID 30141925 DOI: 10.1021/Jacs.8B08145 |
0.802 |
|
2018 |
Wang YH, Goldsmith ZK, Schneider PE, Anson CW, Gerken JB, Ghosh S, Hammes-Schiffer S, Stahl SS. Kinetic and Mechanistic Characterization of Low-Overpotential, H2O2-Selective Reduction of O2 Catalyzed by N2O2-Ligated Cobalt Complexes. Journal of the American Chemical Society. PMID 30060652 DOI: 10.1021/Jacs.8B06394 |
0.44 |
|
2018 |
Ryan M, Martinelli JR, Stahl SS. Cu-Catalyzed Aerobic Oxidative N-N Coupling of Carbazoles and Diarylamines Including Selective Cross-Coupling. Journal of the American Chemical Society. PMID 29989813 DOI: 10.1021/Jacs.8B05245 |
0.427 |
|
2018 |
Lennox AJJ, Nutting JE, Stahl SS. Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chemical Science. 9: 356-361. PMID 29732109 DOI: 10.1039/C7Sc04032F |
0.406 |
|
2018 |
Nutting JE, Rafiee M, Stahl SS. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chemical Reviews. PMID 29707945 DOI: 10.1021/Acs.Chemrev.7B00763 |
0.656 |
|
2018 |
Wang F, Rafiee M, Stahl SS. Electrochemical Functional-Group-Tolerant Shono-Type Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. Angewandte Chemie (International Ed. in English). PMID 29659129 DOI: 10.1002/Anie.201803539 |
0.647 |
|
2018 |
Das A, Rahimi A, Ulbrich A, Alherech M, Motagamwala AH, Bhalla A, da Costa Sousa L, Balan V, Dumesic JA, Hegg EL, Dale BE, Ralph J, Coon JJ, Stahl SS. Lignin Conversion to Low-Molecular-Weight Aromatics via an Aerobic Oxidation-Hydrolysis Sequence: Comparison of Different Lignin Sources Acs Sustainable Chemistry & Engineering. 6: 3367-3374. DOI: 10.1021/Acssuschemeng.7B03541 |
0.472 |
|
2018 |
Das A, Rahimi A, Ulbrich A, Alherech M, Motagamwala AH, Bhalla A, da Costa Sousa L, Balan V, Dumesic JA, Hegg EL, Dale BE, Ralph J, Coon JJ, Stahl SS. Lignin Conversion to Low-Molecular-Weight Aromatics via an Aerobic Oxidation-Hydrolysis Sequence: Comparison of Different Lignin Sources Acs Sustainable Chemistry & Engineering. 6: 3367-3374. DOI: 10.1021/Acssuschemeng.7B03541 |
0.472 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/Acscatal.8B01640 |
0.66 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations Acs Catalysis. 8: 6738-6744. DOI: 10.1021/acscatal.8b01640 |
0.332 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/Acscatal.8B01009 |
0.542 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Tereniak SJ, Landis CR, Stahl SS. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions Acs Catalysis. 8: 3708-3714. DOI: 10.1021/acscatal.8b01009 |
0.416 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/Acscatal.7B02886 |
0.833 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts Acs Catalysis. 8: 1038-1047. DOI: 10.1021/acscatal.7b02886 |
0.332 |
|
2018 |
Preger Y, Gerken JB, Biswas S, Anson CW, Johnson MR, Root TW, Stahl SS. Quinone-Mediated Electrochemical O2 Reduction Accessing High Power Density with an Off-Electrode Co-N/C Catalyst Joule. 2: 2722-2731. DOI: 10.1016/J.Joule.2018.09.010 |
0.382 |
|
2017 |
Rafiee M, Wang F, Hruszkewycz DP, Stahl SS. N-Hydroxyphthalimide-Mediated Electrochemical Iodination of Methylarenes and Comparison to Electron-Transfer-Initiated C-H Functionalization. Journal of the American Chemical Society. PMID 29220181 DOI: 10.1021/Jacs.7B09744 |
0.652 |
|
2017 |
Anson CW, Stahl SS. Cooperative Electrocatalytic O2 Reduction Involving Co(salophen) with p-Hydroquinone as an Electron-Proton Transfer Mediator. Journal of the American Chemical Society. PMID 29198114 DOI: 10.1021/Jacs.7B11362 |
0.331 |
|
2017 |
Gerken JB, Pang YQ, Lauber MB, Stahl SS. Structural Effects on the pH-Dependent Redox Properties of Organic Nitroxyls: Pourbaix Diagrams for TEMPO, ABNO, and Three TEMPO Analogs. The Journal of Organic Chemistry. PMID 29182282 DOI: 10.1021/Acs.Joc.7B02547 |
0.408 |
|
2017 |
Wang YH, Pegis ML, Mayer JM, Stahl SS. Molecular Cobalt Catalysts for O2 Reduction: Low-Overpotential Production of H2O2 and Comparison with Iron-Based Catalysts. Journal of the American Chemical Society. PMID 29039921 DOI: 10.1021/Jacs.7B09089 |
0.598 |
|
2017 |
Wang D, Weinstein AB, White PB, Stahl SS. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chemical Reviews. PMID 28975795 DOI: 10.1021/Acs.Chemrev.7B00334 |
0.828 |
|
2017 |
Tereniak SJ, Stahl SS. Mechanistic Basis for Efficient, Site-Selective, Aerobic Catalytic Turnover in Pd-Catalyzed C-H Imidoylation of Heterocycle-Containing Molecules. Journal of the American Chemical Society. PMID 28942639 DOI: 10.1021/Jacs.7B07359 |
0.499 |
|
2017 |
Walroth RC, Miles KC, Lukens JT, MacMillan SN, Stahl SS, Lancaster KM. Electronic Structural Analysis of Copper(II)-TEMPO/ABNO Complexes Provides Evidence for Copper(I)-Oxoammonium Character. Journal of the American Chemical Society. PMID 28921958 DOI: 10.1021/Jacs.7B07186 |
0.406 |
|
2017 |
Das A, Stahl SS. Non-Covalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene-TEMPO Conjugate. Angewandte Chemie (International Ed. in English). PMID 28586133 DOI: 10.1002/Anie.201704921 |
0.614 |
|
2017 |
Vasilopoulos A, Zultanski SL, Stahl SS. Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes. Journal of the American Chemical Society. PMID 28555493 DOI: 10.1021/Jacs.7B03387 |
0.48 |
|
2017 |
McCann SD, Lumb JP, Arndtsen BA, Stahl SS. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst. Acs Central Science. 3: 314-321. PMID 28470049 DOI: 10.1021/Acscentsci.7B00022 |
0.524 |
|
2017 |
Hruszkewycz DP, Miles KC, Thiel OR, Stahl SS. Co/NHPI-mediated aerobic oxygenation of benzylic C-H bonds in pharmaceutically relevant molecules. Chemical Science. 8: 1282-1287. PMID 28451270 DOI: 10.1039/C6Sc03831J |
0.503 |
|
2017 |
Wang D, Stahl SS. Pd-Catalyzed Aerobic Oxidative Biaryl Coupling: Non-Redox Cocatalysis by Cu(OTf)2 and Discovery of Fe(OTf)3 as a Highly Effective Cocatalyst. Journal of the American Chemical Society. PMID 28399364 DOI: 10.1021/Jacs.7B01970 |
0.673 |
|
2017 |
Goldsmith ZK, Harshan AK, Gerken JB, Vörös M, Galli G, Stahl SS, Hammes-Schiffer S. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Proceedings of the National Academy of Sciences of the United States of America. PMID 28265083 DOI: 10.1073/Pnas.1702081114 |
0.401 |
|
2017 |
Jaworski JN, McCann SD, Guzei IA, Stahl SS. Detection of Palladium(I) in Aerobic Oxidation Catalysis. Angewandte Chemie (International Ed. in English). PMID 28217896 DOI: 10.1002/Anie.201700345 |
0.524 |
|
2017 |
Mannel DS, Ahmed MS, Root TW, Stahl SS. Discovery of Multicomponent Heterogeneous Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols. Journal of the American Chemical Society. PMID 28060501 DOI: 10.1021/Jacs.6B12722 |
0.839 |
|
2017 |
Stahl S, Rovis T. Cluster Preface: Catalytic Aerobic Oxidations Synlett. 28: 1546-1547. DOI: 10.1055/S-0036-1590547 |
0.343 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/Acs.Oprd.7B00223 |
0.835 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2017 |
Ahmed MS, Mannel DS, Root TW, Stahl SS. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst Organic Process Research & Development. 21: 1388-1393. DOI: 10.1021/acs.oprd.7b00223 |
0.32 |
|
2016 |
Iosub AV, Stahl SS. Palladium-Catalyzed Aerobic Dehydrogenation of Cyclic Hydrocarbons for the Synthesis of Substituted Aromatics and Other Unsaturated Products. Acs Catalysis. 6: 8201-8213. PMID 28154785 DOI: 10.1021/Acscatal.6B02406 |
0.465 |
|
2016 |
Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay. Science (New York, N.Y.). 353: 1014-1018. PMID 27701109 DOI: 10.1126/Science.Aaf7783 |
0.649 |
|
2016 |
Miles KC, Abrams ML, Landis CR, Stahl SS. KetoABNO/NOx Cocatalytic Aerobic Oxidation of Aldehydes to Carboxylic Acids and Access to α-Chiral Carboxylic Acids via Sequential Asymmetric Hydroformylation/Oxidation. Organic Letters. PMID 27410397 DOI: 10.1021/Acs.Orglett.6B01598 |
0.452 |
|
2016 |
Clagg K, Hou H, Weinstein AB, Russell D, Stahl SS, Koenig SG. Synthesis of Indole-2-carboxylate Derivatives via Palladium-Catalyzed Aerobic Amination of Aryl C-H Bonds. Organic Letters. PMID 27404018 DOI: 10.1021/Acs.Orglett.6B01592 |
0.779 |
|
2016 |
Badalyan A, Stahl SS. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature. PMID 27350245 DOI: 10.1038/Nature18008 |
0.481 |
|
2016 |
White PB, Jaworski JN, Zhu GH, Stahl SS. Diazafluorenone-Promoted Oxidation Catalysis: Insights into the Role of Bidentate Ligands in Pd-Catalyzed Aerobic Aza-Wacker Reactions. Acs Catalysis. 6: 3340-3348. PMID 27175308 DOI: 10.1021/Acscatal.6B00953 |
0.458 |
|
2016 |
Zultanski SL, Zhao J, Stahl SS. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines. Journal of the American Chemical Society. PMID 27171973 DOI: 10.1021/Jacs.6B03931 |
0.506 |
|
2016 |
White PB, Jaworski JN, Fry CG, Dolinar BS, Guzei IA, Stahl SS. Structurally Diverse Diazafluorene-Ligated Palladium(II) Complexes and their Implications for Aerobic Oxidation Reactions. Journal of the American Chemical Society. PMID 26967703 DOI: 10.1021/Jacs.6B01188 |
0.423 |
|
2016 |
Anson CW, Ghosh S, Hammes-Schiffer S, Stahl SS. Co(salophen)-Catalyzed Aerobic Oxidation of para-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. Journal of the American Chemical Society. PMID 26924338 DOI: 10.1021/Jacs.6B00254 |
0.522 |
|
2016 |
Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay Science. 353: 1014-1018. DOI: 10.1126/science.aaf7783 |
0.37 |
|
2016 |
Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay Science. 353: 1014-1018. DOI: 10.1126/science.aaf7783 |
0.37 |
|
2016 |
Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay Science. 353: 1014-1018. DOI: 10.1126/science.aaf7783 |
0.37 |
|
2015 |
Gerken JB, Stahl SS. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NO x Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis. Acs Central Science. 1: 234-43. PMID 27162977 DOI: 10.1021/Acscentsci.5B00163 |
0.47 |
|
2015 |
McCann SD, Stahl SS. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis. Journal of the American Chemical Society. PMID 26694091 DOI: 10.1021/Jacs.5B09940 |
0.46 |
|
2015 |
Osterberg PM, Niemeier JK, Welch CJ, Hawkins JM, Martinelli JR, Johnson TE, Root TW, Stahl SS. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry. Organic Process Research & Development. 19: 1537-1543. PMID 26622165 DOI: 10.1021/Op500328F |
0.329 |
|
2015 |
Chen JY, Dang L, Liang H, Bi W, Gerken JB, Jin S, Alp EE, Stahl SS. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe(4+) by Mössbauer Spectroscopy. Journal of the American Chemical Society. PMID 26601790 DOI: 10.1021/Jacs.5B10699 |
0.361 |
|
2015 |
Wendlandt AE, Stahl SS. Quinone-Catalyzed Selective Oxidation of Organic Molecules. Angewandte Chemie (International Ed. in English). PMID 26530485 DOI: 10.1002/Anie.201505017 |
0.815 |
|
2015 |
Rafiee M, Miles KC, Stahl SS. Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects. Journal of the American Chemical Society. PMID 26505317 DOI: 10.1021/Jacs.5B09672 |
0.686 |
|
2015 |
Steves JE, Stahl SS. Stable TEMPO and ABNO Catalyst Solutions for User-Friendly (bpy)Cu/Nitroxyl-Catalyzed Aerobic Alcohol Oxidation. The Journal of Organic Chemistry. 80: 11184-8. PMID 26457658 DOI: 10.1021/Acs.Joc.5B01950 |
0.422 |
|
2015 |
Iosub AV, Stahl SS. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon. Organic Letters. 17: 4404-7. PMID 26333043 DOI: 10.1021/Acs.Orglett.5B01790 |
0.524 |
|
2015 |
Zheng C, Stahl SS. Regioselective aerobic oxidative Heck reactions with electronically unbiased alkenes: efficient access to α-alkyl vinylarenes. Chemical Communications (Cambridge, England). 51: 12771-4. PMID 26166679 DOI: 10.1039/C5Cc05312A |
0.746 |
|
2015 |
Pokhrel R, Goetz MK, Shaner SE, Wu X, Stahl SS. The "Best Catalyst" for Water Oxidation Depends on the Oxidation Method Employed: A Case Study of Manganese Oxides. Journal of the American Chemical Society. 137: 8384-7. PMID 26087311 DOI: 10.1021/Jacs.5B05093 |
0.464 |
|
2015 |
McCann SD, Stahl SS. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. Accounts of Chemical Research. 48: 1756-66. PMID 26020118 DOI: 10.1021/Acs.Accounts.5B00060 |
0.568 |
|
2015 |
Zultanski SL, Stahl SS. Palladium-Catalyzed Aerobic Acetoxylation of Benzene using NOx-Based Redox Mediators. Journal of Organometallic Chemistry. 52: 97-102. PMID 25843978 DOI: 10.1016/J.Jorganchem.2015.03.003 |
0.487 |
|
2015 |
Xie X, Stahl SS. Efficient and selective Cu/nitroxyl-catalyzed methods for aerobic oxidative lactonization of diols. Journal of the American Chemical Society. 137: 3767-70. PMID 25751494 DOI: 10.1021/Jacs.5B01036 |
0.514 |
|
2015 |
Iosub AV, Stahl SS. Palladium-catalyzed aerobic oxidative dehydrogenation of cyclohexenes to substituted arene derivatives. Journal of the American Chemical Society. 137: 3454-7. PMID 25734414 DOI: 10.1021/Ja512770U |
0.51 |
|
2015 |
Kim J, Stahl SS. Cu-catalyzed aerobic oxidative three-component coupling route to N-sulfonyl amidines via an ynamine intermediate. The Journal of Organic Chemistry. 80: 2448-54. PMID 25594112 DOI: 10.1021/Jo5029198 |
0.593 |
|
2015 |
Zheng C, Stahl SS. Regioselective aerobic oxidative Heck reactions with electronically unbiased alkenes: Efficient access to α-alkyl vinylarenes Chemical Communications. 51: 12771-12774. DOI: 10.1039/c5cc05312a |
0.661 |
|
2015 |
Steves JE, Preger Y, Martinelli JR, Welch CJ, Root TW, Hawkins JM, Stahl SS. Process Development of CuI/ABNO/NMI-Catalyzed Aerobic Alcohol Oxidation Organic Process Research and Development. 19: 1548-1553. DOI: 10.1021/Acs.Oprd.5B00179 |
0.496 |
|
2015 |
Greene JF, Preger Y, Stahl SS, Root TW. PTFE-Membrane Flow Reactor for Aerobic Oxidation Reactions and Its Application to Alcohol Oxidation Organic Process Research and Development. 19: 858-864. DOI: 10.1021/Acs.Oprd.5B00125 |
0.472 |
|
2015 |
Parajuli R, Gerken JB, Keyshar K, Sullivan I, Sivasankar N, Teamey K, Stahl SS, Cole EB. Integration of Anodic and Cathodic Catalysts of Earth-Abundant Materials for Efficient, Scalable CO2 Reduction Topics in Catalysis. 58: 57-66. DOI: 10.1007/S11244-014-0345-X |
0.403 |
|
2015 |
Wendlandt AE, Stahl SS. Chinon-katalysierte, selektive Oxidation organischer Moleküle Angewandte Chemie. 127: 14848-14868. DOI: 10.1002/Ange.201505017 |
0.749 |
|
2015 |
Stahl SS, Miles KC. Practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NOx catalyst systems: An update from a pioneer of greener methods for industrially relevant oxidations Aldrichimica Acta. 48: 8-11. |
0.338 |
|
2014 |
Mannel DS, Stahl SS, Root TW. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH) x /Al2O3 Catalyst. Organic Process Research & Development. 18: 1503-1508. PMID 25620869 DOI: 10.1021/Op5002676 |
0.829 |
|
2014 |
Weinstein AB, Stahl SS. Palladium Catalyzed Aryl C-H Amination with O2 via In Situ Formation of Peroxide-Based Oxidant(s) from Dioxane. Catalysis Science & Technology. 4: 4301-4307. PMID 25530837 DOI: 10.1039/C4Cy00764F |
0.789 |
|
2014 |
Diao T, Stahl SS. O2-Promoted Allylic Acetoxylation of Alkenes: Assessment of "Push" vs. "Pull" Mechanisms and Comparison between O2 and Benzoquinone. Polyhedron. 84: 96-102. PMID 25435646 DOI: 10.1016/J.Poly.2014.06.038 |
0.738 |
|
2014 |
Rahimi A, Ulbrich A, Coon JJ, Stahl SS. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature. 515: 249-52. PMID 25363781 DOI: 10.1038/Nature13867 |
0.367 |
|
2014 |
Wendlandt AE, Stahl SS. Modular o-quinone catalyst system for dehydrogenation of tetrahydroquinolines under ambient conditions. Journal of the American Chemical Society. 136: 11910-3. PMID 25109345 DOI: 10.1021/Ja506546W |
0.763 |
|
2014 |
Ryland BL, McCann SD, Brunold TC, Stahl SS. Mechanism of alcohol oxidation mediated by copper(II) and nitroxyl radicals. Journal of the American Chemical Society. 136: 12166-73. PMID 25090238 DOI: 10.1021/Ja5070137 |
0.833 |
|
2014 |
Ryland BL, Stahl SS. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. Angewandte Chemie (International Ed. in English). 53: 8824-38. PMID 25044821 DOI: 10.1002/Anie.201403110 |
0.843 |
|
2014 |
Wang D, Izawa Y, Stahl SS. Pd-catalyzed aerobic oxidative coupling of arenes: evidence for transmetalation between two Pd(II)-aryl intermediates. Journal of the American Chemical Society. 136: 9914-7. PMID 24965384 DOI: 10.1021/Ja505405U |
0.615 |
|
2014 |
Wendlandt AE, Stahl SS. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst. Journal of the American Chemical Society. 136: 506-12. PMID 24328193 DOI: 10.1021/Ja411692V |
0.822 |
|
2014 |
Stephenson NA, Gellman SH, Stahl SS. Ammonolysis of anilides promoted by ethylene glycol and phosphoric acid Rsc Advances. 4: 46840-46843. DOI: 10.1039/C4Ra09065A |
0.747 |
|
2014 |
Gerken JB, Shaner SE, Massé RC, Porubsky NJ, Stahl SS. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal Energy and Environmental Science. 7: 2376-2382. DOI: 10.1039/C4Ee00436A |
0.392 |
|
2014 |
Chen JYC, Miller JT, Gerken JB, Stahl SS. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: Promotion of activity by a redox-inert metal ion Energy and Environmental Science. 7: 1382-1386. DOI: 10.1039/C3Ee43811B |
0.406 |
|
2014 |
Gladysz JA, Bedford RB, Fujita M, Gabbaï FP, Goldberg KI, Holland PL, Kiplinger JL, Krische MJ, Louie J, Lu CC, Norton JR, Petrukhina MA, Ren T, Stahl SS, Tilley TD, et al. Organometallics roundtable 2013-2014 Organometallics. 33: 1505-1527. DOI: 10.1021/Om500253Z |
0.55 |
|
2014 |
Stahl SS, Diao T. Oxidation Adjacent to C X Bonds by Dehydrogenation Comprehensive Organic Synthesis: Second Edition. 7: 178-212. DOI: 10.1016/B978-0-08-097742-3.00707-2 |
0.615 |
|
2014 |
Tsybizova A, Ryland BL, Tsierkezos N, Stahl SS, Roithová J, Schröder D. Speciation behavior of copper(II) acetate in simple organic solvents - Revealing the effect of trace water European Journal of Inorganic Chemistry. 1407-1412. DOI: 10.1002/Ejic.201400036 |
0.791 |
|
2014 |
Ryland BL, Stahl SS. Praktische aerobe Oxidationen von Alkoholen und Aminen mit dem homogenen Kupfer/TEMPO- und verwandten Katalysatorsystemen Angewandte Chemie. 126: 8968-8983. DOI: 10.1002/Ange.201403110 |
0.755 |
|
2014 |
Hoover JM, Stahl SS. Air Oxidation of Primary Alcohols Catalyzed by Copper(I)/TEMPO. Preparation of 2‐Amino‐5‐bromo‐benzaldehyde Organic Syntheses. 240-250. DOI: 10.1002/0471264229.Os090.23 |
0.678 |
|
2013 |
Hoover JM, Ryland BL, Stahl SS. Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems. Acs Catalysis. 3: 2599-2605. PMID 24558634 DOI: 10.1021/Cs400689A |
0.834 |
|
2013 |
Steves JE, Stahl SS. Copper(I)/ABNO-catalyzed aerobic alcohol oxidation: alleviating steric and electronic constraints of Cu/TEMPO catalyst systems. Journal of the American Chemical Society. 135: 15742-5. PMID 24128057 DOI: 10.1021/Ja409241H |
0.48 |
|
2013 |
Weinstein AB, Schuman DP, Tan ZX, Stahl SS. Synthesis of vicinal aminoalcohols by stereoselective aza-Wacker cyclizations: access to (-)-acosamine by redox relay. Angewandte Chemie (International Ed. in English). 52: 11867-70. PMID 24105928 DOI: 10.1002/Anie.201305926 |
0.717 |
|
2013 |
Powell AB, Stahl SS. Aerobic oxidation of diverse primary alcohols to methyl esters with a readily accessible heterogeneous Pd/Bi/Te catalyst. Organic Letters. 15: 5072-5. PMID 24050194 DOI: 10.1021/Ol402428E |
0.51 |
|
2013 |
Kim J, Stahl SS. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature. Acs Catalysis. 3: 1652-1656. PMID 24015373 DOI: 10.1021/Cs400360E |
0.642 |
|
2013 |
Hong WP, Iosub AV, Stahl SS. Pd-catalyzed Semmler-Wolff reactions for the conversion of substituted cyclohexenone oximes to primary anilines. Journal of the American Chemical Society. 135: 13664-7. PMID 23987212 DOI: 10.1021/Ja4073172 |
0.482 |
|
2013 |
Suess AM, Ertem MZ, Cramer CJ, Stahl SS. Divergence between organometallic and single-electron-transfer mechanisms in copper(II)-mediated aerobic C-H oxidation. Journal of the American Chemical Society. 135: 9797-804. PMID 23750607 DOI: 10.1021/Ja4026424 |
0.83 |
|
2013 |
MartÃnez C, Wu Y, Weinstein AB, Stahl SS, Liu G, Muñiz K. Palladium-catalyzed intermolecular aminoacetoxylation of alkenes and the influence of PhI(OAc)2 on aminopalladation stereoselectivity. The Journal of Organic Chemistry. 78: 6309-15. PMID 23734834 DOI: 10.1021/Jo400671Q |
0.773 |
|
2013 |
Diao T, Pun D, Stahl SS. Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity. Journal of the American Chemical Society. 135: 8205-12. PMID 23662700 DOI: 10.1021/Ja4031648 |
0.715 |
|
2013 |
Pun D, Diao T, Stahl SS. Aerobic dehydrogenation of cyclohexanone to phenol catalyzed by Pd(TFA)2/2-dimethylaminopyridine: evidence for the role of Pd nanoparticles. Journal of the American Chemical Society. 135: 8213-21. PMID 23662607 DOI: 10.1021/Ja403165U |
0.69 |
|
2013 |
Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS. Chemoselective metal-free aerobic alcohol oxidation in lignin. Journal of the American Chemical Society. 135: 6415-8. PMID 23570328 DOI: 10.1021/Ja401793N |
0.477 |
|
2013 |
Gerken JB, Rigsby ML, Ruther RE, Pérez-Rodríguez RJ, Guzei IA, Hamers RJ, Stahl SS. Modular synthesis of alkyne-substituted ruthenium polypyridyl complexes suitable for "click" coupling. Inorganic Chemistry. 52: 2796-8. PMID 23458735 DOI: 10.1021/Ic302827S |
0.793 |
|
2013 |
Izawa Y, Zheng C, Stahl SS. Aerobic oxidative Heck/dehydrogenation reactions of cyclohexenones: efficient access to meta-substituted phenols. Angewandte Chemie (International Ed. in English). 52: 3672-5. PMID 23423740 DOI: 10.1002/Anie.201209457 |
0.753 |
|
2013 |
Hoover JM, Ryland BL, Stahl SS. Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation. Journal of the American Chemical Society. 135: 2357-67. PMID 23317450 DOI: 10.1021/Ja3117203 |
0.841 |
|
2013 |
Ye X, White PB, Stahl SS. Mechanistic studies of Wacker-type amidocyclization of alkenes catalyzed by (IMes)Pd(TFA)2(H2O): kinetic and stereochemical implications of proton transfer. The Journal of Organic Chemistry. 78: 2083-90. PMID 23157332 DOI: 10.1021/Jo302266T |
0.708 |
|
2013 |
Hoover JM, Stahl SS. Air oxidation of primary alcohols catalyzed by copper(I)/TEMPO. Preparation of 2-amino-5-bromobenzaldehyde Organic Syntheses. 90: 240-250. DOI: 10.15227/orgsyn.090.0240 |
0.65 |
|
2013 |
Greene JF, Hoover JM, Mannel DS, Root TW, Stahl SS. Continuous-flow aerobic oxidation of primary alcohols with a copper(I)/TEMPO catalyst Organic Process Research and Development. 17: 1247-1251. DOI: 10.1021/Op400207F |
0.827 |
|
2013 |
Hill NJ, Hoover JM, Stahl SS. Aerobic alcohol oxidation using a copper(I)/TEMPO catalyst system: A green, catalytic oxidation reaction for the undergraduate organic chemistry laboratory Journal of Chemical Education. 90: 102-105. DOI: 10.1021/Ed300368Q |
0.706 |
|
2013 |
Lauber MB, Stahl SS. Efficient aerobic oxidation of secondary alcohols at ambient temperature with an ABNO/NOx catalyst system Acs Catalysis. 3: 2612-2616. DOI: 10.1021/Cs400746M |
0.48 |
|
2012 |
King AE, Ryland BL, Brunold TC, Stahl SS. Kinetic and Spectroscopic Studies of Aerobic Copper(II)-Catalyzed Methoxylation of Arylboronic Esters and Insights into Aryl Transmetalation to Copper(II). Organometallics. 31: 7948-7957. PMID 23204631 DOI: 10.1021/Om300586P |
0.814 |
|
2012 |
Diao T, White P, Guzei I, Stahl SS. Characterization of DMSO coordination to palladium(II) in solution and insights into the aerobic oxidation catalyst, Pd(DMSO)2(TFA)2. Inorganic Chemistry. 51: 11898-909. PMID 23092381 DOI: 10.1021/Ic301799P |
0.69 |
|
2012 |
Weinstein AB, Stahl SS. Reconciling the stereochemical course of nucleopalladation with the development of enantioselective wacker-type cyclizations. Angewandte Chemie (International Ed. in English). 51: 11505-9. PMID 23074039 DOI: 10.1002/Anie.201206702 |
0.694 |
|
2012 |
Zheng C, Wang D, Stahl SS. Catalyst-controlled regioselectivity in the synthesis of branched conjugated dienes via aerobic oxidative Heck reactions. Journal of the American Chemical Society. 134: 16496-9. PMID 22998540 DOI: 10.1021/Ja307371W |
0.807 |
|
2012 |
Diao T, Wadzinski TJ, Stahl SS. Direct Aerobic α, β-Dehydrogenation of Aldehydes and Ketones with a Pd(TFA)(2)/4,5-Diazafluorenone Catalyst(). Chemical Science (Royal Society of Chemistry : 2010). 3: 887-891. PMID 22690316 DOI: 10.1039/C1Sc00724F |
0.702 |
|
2012 |
Hoover JM, Steves JE, Stahl SS. Copper(I)/TEMPO-catalyzed aerobic oxidation of primary alcohols to aldehydes with ambient air. Nature Protocols. 7: 1161-6. PMID 22635108 DOI: 10.1038/Nprot.2012.057 |
0.733 |
|
2012 |
Gerken JB, Chen JY, Massé RC, Powell AB, Stahl SS. Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. Angewandte Chemie (International Ed. in English). 51: 6676-80. PMID 22628187 DOI: 10.1002/Anie.201201999 |
0.418 |
|
2012 |
Wendlandt AE, Stahl SS. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines. Organic Letters. 14: 2850-3. PMID 22594886 DOI: 10.1021/Ol301095J |
0.798 |
|
2012 |
Wendlandt AE, Stahl SS. Copper(II)-mediated oxidative cyclization of enamides to oxazoles. Organic & Biomolecular Chemistry. 10: 3866-70. PMID 22526327 DOI: 10.1039/C2Ob25310K |
0.789 |
|
2012 |
Lu Z, Stahl SS. Intramolecular Pd(II)-catalyzed aerobic oxidative amination of alkenes: synthesis of six-membered N-heterocycles. Organic Letters. 14: 1234-7. PMID 22356620 DOI: 10.1021/Ol300030W |
0.713 |
|
2012 |
Redford JE, McDonald RI, Rigsby ML, Wiensch JD, Stahl SS. Stereoselective synthesis of cis-2,5-disubstituted pyrrolidines via Wacker-type aerobic oxidative cyclization of alkenes with tert-butanesulfinamide nucleophiles. Organic Letters. 14: 1242-5. PMID 22352383 DOI: 10.1021/Ol3000519 |
0.834 |
|
2012 |
Campbell AN, Stahl SS. Overcoming the "oxidant problem": strategies to use O2 as the oxidant in organometallic C-H oxidation reactions catalyzed by Pd (and Cu). Accounts of Chemical Research. 45: 851-63. PMID 22263575 DOI: 10.1021/Ar2002045 |
0.578 |
|
2012 |
Rigsby ML, Mandal S, Nam W, Spencer LC, Llobet A, Stahl SS. Cobalt analogs of Ru-based water oxidation catalysts: Overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O 2 evolution Chemical Science. 3: 3058-3062. DOI: 10.1039/C2Sc20755A |
0.824 |
|
2011 |
Wendlandt AE, Suess AM, Stahl SS. Copper-catalyzed aerobic oxidative C-H functionalizations: trends and mechanistic insights. Angewandte Chemie (International Ed. in English). 50: 11062-87. PMID 22034061 DOI: 10.1002/Anie.201103945 |
0.842 |
|
2011 |
White PB, Stahl SS. Reversible alkene insertion into the Pd-N bond of Pd(II)-sulfonamidates and implications for catalytic amidation reactions. Journal of the American Chemical Society. 133: 18594-7. PMID 22007610 DOI: 10.1021/Ja208560H |
0.433 |
|
2011 |
Huffman LM, Casitas A, Font M, Canta M, Costas M, Ribas X, Stahl SS. Observation and mechanistic study of facile C-O bond formation between a well-defined aryl-copper(III) complex and oxygen nucleophiles. Chemistry (Weinheim An Der Bergstrasse, Germany). 17: 10643-50. PMID 22003511 DOI: 10.1002/Chem.201100608 |
0.743 |
|
2011 |
Hoover JM, Stahl SS. Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols. Journal of the American Chemical Society. 133: 16901-10. PMID 21861488 DOI: 10.1021/Ja206230H |
0.738 |
|
2011 |
Campbell AN, Meyer EB, Stahl SS. Regiocontrolled aerobic oxidative coupling of indoles and benzene using Pd catalysts with 4,5-diazafluorene ligands. Chemical Communications (Cambridge, England). 47: 10257-9. PMID 21860880 DOI: 10.1039/C1Cc13632A |
0.504 |
|
2011 |
Diao T, Stahl SS. Synthesis of cyclic enones via direct palladium-catalyzed aerobic dehydrogenation of ketones. Journal of the American Chemical Society. 133: 14566-9. PMID 21851123 DOI: 10.1021/Ja206575J |
0.72 |
|
2011 |
Gerken JB, McAlpin JG, Chen JY, Rigsby ML, Casey WH, Britt RD, Stahl SS. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity. Journal of the American Chemical Society. 133: 14431-42. PMID 21806043 DOI: 10.1021/Ja205647M |
0.822 |
|
2011 |
Decharin N, Popp BV, Stahl SS. Reaction of O2 with [(-)-sparteine]Pd(H)Cl: evidence for an intramolecular [H-L]+ "reductive elimination" pathway. Journal of the American Chemical Society. 133: 13268-71. PMID 21790197 DOI: 10.1021/Ja204989P |
0.823 |
|
2011 |
Benson MC, Ruther RE, Gerken JB, Rigsby ML, Bishop LM, Tan Y, Stahl SS, Hamers RJ. Modular "click" chemistry for electrochemically and photoelectrochemically active molecular interfaces to tin oxide surfaces. Acs Applied Materials & Interfaces. 3: 3110-9. PMID 21766849 DOI: 10.1021/Am200615R |
0.802 |
|
2011 |
Izawa Y, Pun D, Stahl SS. Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols. Science (New York, N.Y.). 333: 209-13. PMID 21659567 DOI: 10.1126/Science.1204183 |
0.418 |
|
2011 |
Huffman LM, Stahl SS. Mechanistic analysis of trans C-N reductive elimination from a square-planar macrocyclic aryl-copper(III) complex. Dalton Transactions (Cambridge, England : 2003). 40: 8959-63. PMID 21544307 DOI: 10.1039/C1Dt10463B |
0.726 |
|
2011 |
McDonald RI, White PB, Weinstein AB, Tam CP, Stahl SS. Enantioselective Pd(II)-catalyzed aerobic oxidative amidation of alkenes and insights into the role of electronic asymmetry in pyridine-oxazoline ligands. Organic Letters. 13: 2830-3. PMID 21534607 DOI: 10.1021/Ol200784Y |
0.842 |
|
2011 |
Ruther RE, Rigsby ML, Gerken JB, Hogendoorn SR, Landis EC, Stahl SS, Hamers RJ. Highly stable redox-active molecular layers by covalent grafting to conductive diamond. Journal of the American Chemical Society. 133: 5692-4. PMID 21438578 DOI: 10.1021/Ja200210T |
0.769 |
|
2011 |
Decharin N, Stahl SS. Benzoquinone-promoted reaction of O2 with a Pd(II)-hydride. Journal of the American Chemical Society. 133: 5732-5. PMID 21438561 DOI: 10.1021/Ja200957N |
0.833 |
|
2011 |
McDonald RI, Liu G, Stahl SS. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chemical Reviews. 111: 2981-3019. PMID 21428440 DOI: 10.1021/Cr100371Y |
0.788 |
|
2011 |
Ye X, Liu G, Popp BV, Stahl SS. Mechanistic studies of Wacker-type intramolecular aerobic oxidative amination of alkenes catalyzed by Pd(OAc)2/pyridine. The Journal of Organic Chemistry. 76: 1031-44. PMID 21250706 DOI: 10.1021/Jo102338A |
0.851 |
|
2011 |
Konnick MM, Decharin N, Popp BV, Stahl SS. O2 insertion into a palladium(II)-hydride bond: Observation of mechanistic crossover between HX-reductive-elimination and hydrogen-atom-abstraction pathways Chemical Science. 2: 326-330. DOI: 10.1039/C0Sc00392A |
0.827 |
|
2011 |
Wendlandt AE, Suess AM, Stahl SS. Kupferkatalysierte aerobe oxidative C-H-Funktionalisierungen: Trends und Erkenntnisse zum Mechanismus Angewandte Chemie. 123: 11256-11283. DOI: 10.1002/Ange.201103945 |
0.797 |
|
2010 |
Izawa Y, Stahl SS. Aerobic Oxidative Coupling of o-Xylene: Discovery of 2-Fluoropyridine as a Ligand to Support Selective Pd-Catalyzed C-H Functionalization. Advanced Synthesis & Catalysis. 352: 3223-3229. PMID 21399704 DOI: 10.1002/Adsc.201000771 |
0.506 |
|
2010 |
McDonald RI, Stahl SS. Modular Synthesis of 1,2-Diamine Derivatives via Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides. Angewandte Chemie (International Ed. in English). 122: 5661-5664. PMID 21132102 DOI: 10.1002/ange.200906342 |
0.681 |
|
2010 |
Campbell AN, White PB, Guzei IA, Stahl SS. Allylic C-H acetoxylation with a 4,5-diazafluorenone-ligated palladium catalyst: a ligand-based strategy to achieve aerobic catalytic turnover. Journal of the American Chemical Society. 132: 15116-9. PMID 20929224 DOI: 10.1021/Ja105829T |
0.514 |
|
2010 |
Casitas A, Poater A, Solà M, Stahl SS, Costas M, Ribas X. Molecular mechanism of acid-triggered aryl-halide reductive elimination in well-defined aryl-Cu(III)-halide species. Dalton Transactions (Cambridge, England : 2003). 39: 10458-63. PMID 20886163 DOI: 10.1039/C0Dt00284D |
0.379 |
|
2010 |
McDonald RI, Wong GW, Neupane RP, Stahl SS, Landis CR. Enantioselective hydroformylation of N-vinyl carboxamides, allyl carbamates, and allyl ethers using chiral diazaphospholane ligands. Journal of the American Chemical Society. 132: 14027-9. PMID 20845958 DOI: 10.1021/Ja106674N |
0.687 |
|
2010 |
Gerken JB, Landis EC, Hamers RJ, Stahl SS. Fluoride-modulated cobalt catalysts for electrochemical oxidation of water under non-alkaline conditions. Chemsuschem. 3: 1176-9. PMID 20725926 DOI: 10.1002/Cssc.201000161 |
0.413 |
|
2010 |
Ye X, Johnson MD, Diao T, Yates MH, Stahl SS. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions. Green Chemistry : An International Journal and Green Chemistry Resource : Gc. 12: 1180-1186. PMID 20694169 DOI: 10.1039/C0Gc00106F |
0.821 |
|
2010 |
King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. Copper-catalyzed aerobic oxidative functionalization of an arene C-H bond: evidence for an aryl-copper(III) intermediate. Journal of the American Chemical Society. 132: 12068-73. PMID 20690595 DOI: 10.1021/Ja1045378 |
0.808 |
|
2010 |
Popp BV, Morales CM, Landis CR, Stahl SS. Electronic structural comparison of the reactions of dioxygen and alkenes with nitrogen-chelated palladium(0). Inorganic Chemistry. 49: 8200-7. PMID 20604535 DOI: 10.1021/Ic100806W |
0.764 |
|
2010 |
McDonald RI, Stahl SS. Modular synthesis of 1,2-diamine derivatives by palladium-catalyzed aerobic oxidative cyclization of allylic sulfamides. Angewandte Chemie (International Ed. in English). 49: 5529-32. PMID 20583013 DOI: 10.1002/Anie.200906342 |
0.712 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.629 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, Landis C, McDonald R, Wong G, Neupane R. Rhodium-Catalyzed Asymmetric Hydro-formylation Synfacts. 2010: 1390-1390. DOI: 10.1055/s-0030-1258892 |
0.326 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.68 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Stahl S, McDonald R. Palladium-Catalyzed Oxidative Cyclization of Allylic Sulfamides Synfacts. 2010: 1157-1157. DOI: 10.1055/s-0030-1258653 |
0.419 |
|
2010 |
Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X. Direct observation of CuI/CuIII redox steps relevant to Ullmann-type coupling reactions Chemical Science. 1: 326-330. DOI: 10.1039/C0Sc00245C |
0.696 |
|
2009 |
Scarborough CC, Bergant A, Sazama GT, Guzei IA, Spencer LC, Stahl SS. Synthesis of Pd Complexes Bearing an Enantiomerically-Resolved Seven-Membered N-Heterocyclic Carbene Ligands and Initial Studies of their Use in Asymmetric Wacker-Type Oxidative Cyclization Reactions. Tetrahedron. 65: 5084-5092. PMID 20161255 DOI: 10.1016/J.Tet.2009.04.072 |
0.737 |
|
2009 |
Yang L, Lu Z, Stahl SS. Regioselective copper-catalyzed chlorination and bromination of arenes with O(2) as the oxidant. Chemical Communications (Cambridge, England). 6460-2. PMID 19841809 DOI: 10.1039/B915487F |
0.695 |
|
2009 |
Stephenson NA, Zhu J, Gellman SH, Stahl SS. Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. Journal of the American Chemical Society. 131: 10003-8. PMID 19621957 DOI: 10.1021/Ja8094262 |
0.81 |
|
2009 |
King AE, Brunold TC, Stahl SS. Mechanistic study of copper-catalyzed aerobic oxidative coupling of arylboronic esters and methanol: insights into an organometallic oxidase reaction. Journal of the American Chemical Society. 131: 5044-5. PMID 19309072 DOI: 10.1021/Ja9006657 |
0.728 |
|
Show low-probability matches. |