cached image

Shu-ou Shan - Publications

Affiliations: 
California Institute of Technology, Pasadena, CA 
Area:
Macromolecular machines; protein sorting and localization; molecular recognition and regulation by novel GTPases; protein and nucleic acid structure and function
Website:
http://www.cce.caltech.edu/faculty/shan/index.html

102 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Yang CI, Zhu Z, Jones JJ, Lomenick B, Chou TF, Shan SO. System-wide analyses reveal essential roles of N-terminal protein modification in bacterial membrane integrity. Iscience. 25: 104756. PMID 35942092 DOI: 10.1016/j.isci.2022.104756  0.827
2022 Zhu Z, Wang S, Shan SO. Ribosome profiling reveals multiple roles of SecA in cotranslational protein export. Nature Communications. 13: 3393. PMID 35697696 DOI: 10.1038/s41467-022-31061-5  0.844
2022 Yang CI, Kim J, Shan SO. Ribosome-nascent Chain Interaction Regulates N-terminal Protein Modification. Journal of Molecular Biology. 434: 167535. PMID 35278477 DOI: 10.1016/j.jmb.2022.167535  0.461
2022 Jomaa A, Gamerdinger M, Hsieh HH, Wallisch A, Chandrasekaran V, Ulusoy Z, Scaiola A, Hegde RS, Shan SO, Ban N, Deuerling E. Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting. Science (New York, N.Y.). 375: 839-844. PMID 35201867 DOI: 10.1126/science.abl6459  0.43
2021 Hsieh HH, Shan SO. Fidelity of Cotranslational Protein Targeting to the Endoplasmic Reticulum. International Journal of Molecular Sciences. 23. PMID 35008707 DOI: 10.3390/ijms23010281  0.52
2021 Chio US, Liu Y, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion. The Journal of Cell Biology. 220. PMID 34614151 DOI: 10.1083/jcb.202103079  0.854
2021 Ji S, Siegel A, Shan SO, Grimm B, Wang P. Chloroplast SRP43 autonomously protects chlorophyll biosynthesis proteins against heat shock. Nature Plants. PMID 34475529 DOI: 10.1038/s41477-021-00994-y  0.392
2021 Jomaa A, Eitzinger S, Zhu Z, Chandrasekar S, Kobayashi K, Shan SO, Ban N. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Cell Reports. 36: 109350. PMID 34260909 DOI: 10.1016/j.celrep.2021.109350  0.846
2021 Lee JH, Jomaa A, Chung S, Hwang Fu YH, Qian R, Sun X, Hsieh HH, Chandrasekar S, Bi X, Mattei S, Boehringer D, Weiss S, Ban N, Shan SO. Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER. Science Advances. 7. PMID 34020957 DOI: 10.1126/sciadv.abg0942  0.446
2021 Cho H, Shim WJ, Liu Y, Shan SO. J-domain proteins promote client relay from Hsp70 during tail-anchored membrane protein targeting. The Journal of Biological Chemistry. 100546. PMID 33741343 DOI: 10.1016/j.jbc.2021.100546  0.422
2020 Hsieh HH, Lee JH, Chandrasekar S, Shan SO. A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nature Communications. 11: 5840. PMID 33203865 DOI: 10.1038/s41467-020-19548-5  0.549
2020 Siegel A, McAvoy CZ, Lam V, Liang FC, Kroon G, Miaou E, Griffin P, Wright PE, Shan SO. A disorder-to-order transition activates an ATP-Independent Membrane Protein Chaperone. Journal of Molecular Biology. PMID 33188783 DOI: 10.1016/j.jmb.2020.11.007  0.41
2020 Shan S, Wang S, Yang C, Hsieh H. Nascent Protein Selection and Triage at the Ribosome Exit Site The Faseb Journal. 34: 1-1. DOI: 10.1096/Fasebj.2020.34.S1.00156  0.497
2019 Yang CI, Hsieh HH, Shan SO. Timing and specificity of cotranslational nascent protein modification in bacteria. Proceedings of the National Academy of Sciences of the United States of America. PMID 31666319 DOI: 10.1096/Fasebj.2020.34.S1.04322  0.437
2019 Shan SO. Guiding Tail-anchored Membrane Proteins to the ER In a Chaperone Cascade. The Journal of Biological Chemistry. PMID 31575659 DOI: 10.1074/Jbc.Rev119.006197  0.594
2019 Wang S, Jomaa A, Jaskolowski M, Yang CI, Ban N, Shan SO. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nature Structural & Molecular Biology. PMID 31570874 DOI: 10.1038/S41594-019-0297-8  0.677
2019 Hwang Fu YH, Chandrasekar S, Lee JH, Shan SO. A molecular recognition feature mediates ribosome-induced SRP-receptor assembly during protein targeting. The Journal of Cell Biology. PMID 31537711 DOI: 10.1083/Jcb.201901001  0.569
2019 Chio US, Chung S, Weiss S, Shan SO. A Chaperone Lid Ensures Efficient and Privileged Client Transfer during Tail-Anchored Protein Targeting. Cell Reports. 26: 37-44.e7. PMID 30605684 DOI: 10.1016/J.Celrep.2018.12.035  0.854
2018 Cho H, Chio US, Shan SO. In vitro Assays for Targeting and Insertion of Tail-Anchored Proteins Into the ER Membrane. Current Protocols in Cell Biology. e63. PMID 30253068 DOI: 10.1002/Cpcb.63  0.864
2018 Cho H, Shan SO. Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. The Embo Journal. PMID 29973361 DOI: 10.15252/Embj.201899264  0.575
2018 Lee JH, Chandrasekar S, Chung S, Hwang Fu YH, Liu D, Weiss S, Shan SO. Sequential activation of human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting. Proceedings of the National Academy of Sciences of the United States of America. PMID 29848629 DOI: 10.1073/Pnas.1802252115  0.539
2018 McAvoy C, Siegel A, Piszkiewicz S, Miaou E, Yu M, Nguyen T, Moradian A, Sweredoski MJ, Hess S, Shan SO. Two Distinct Sites of client protein interaction with the chaperone cpSRP43. The Journal of Biological Chemistry. PMID 29669809 DOI: 10.1074/Jbc.Ra118.002215  0.713
2018 Wang P, Liang FC, Wittmann D, Siegel A, Shan SO, Grimm B. Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. PMID 29581280 DOI: 10.1073/Pnas.1719645115  0.543
2018 Kobayashi K, Jomaa A, Lee JH, Chandrasekar S, Boehringer D, Shan SO, Ban N. Structure of a prehandover mammalian ribosomal SRP•SRP receptor targeting complex. Science (New York, N.Y.). PMID 29567807 DOI: 10.1126/Science.Aar7924  0.562
2018 Hsieh HH, Shan S. Co-translational Targeting by Signal Recognition Particle Activates Only after Cytosolic Exposure of Signal Sequence Biophysical Journal. 114. DOI: 10.1016/J.Bpj.2017.11.425  0.543
2017 Chio US, Cho H, Shan SO. Mechanisms of Tail-Anchored Membrane Protein Targeting and Insertion. Annual Review of Cell and Developmental Biology. 33: 417-438. PMID 28992441 DOI: 10.1146/Annurev-Cellbio-100616-060839  0.86
2017 Chio US, Chung S, Weiss S, Shan SO. A protean clamp guides membrane targeting of tail-anchored proteins. Proceedings of the National Academy of Sciences of the United States of America. PMID 28973888 DOI: 10.1073/pnas.1708731114  0.863
2017 Wang S, Yang CI, Shan SO. SecA mediates cotranslational targeting and translocation of an inner membrane protein. The Journal of Cell Biology. PMID 28928132 DOI: 10.1083/Jcb.201704036  0.661
2017 Hwang Fu YH, Huang WYC, Shen K, Groves JT, Miller T, Shan SO. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting. Elife. 6. PMID 28753124 DOI: 10.1016/J.Bpj.2017.11.1170  0.694
2017 Jomaa A, Fu YH, Boehringer D, Leibundgut M, Shan SO, Ban N. Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome. Nature Communications. 8: 15470. PMID 28524878 DOI: 10.1038/Ncomms15470  0.823
2017 Fu YH, Huang WYC, Shen K, Groves JT, Miller T, Shan S. Author response: Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting Elife. DOI: 10.7554/Elife.25885.026  0.819
2016 Chen Y, Shen K, Shan SO, Kou SC. Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models. Journal of the American Statistical Association. 111: 951-966. PMID 28943680 DOI: 10.1080/01621459.2016.1140050  0.604
2016 Rao M, Okreglak V, Chio US, Cho H, Walter P, Shan SO. Multiple selection filters ensure accurate tail-anchored membrane protein targeting. Elife. 5. PMID 27925580 DOI: 10.7554/Elife.21301  0.843
2016 Chandrasekar S, Shan SO. Anionic phospholipids and the Albino3 translocase activate SRP-receptor interaction during LHCP targeting. The Journal of Biological Chemistry. PMID 27895124 DOI: 10.1074/Jbc.M116.752956  0.609
2016 Chandrasekar S, Sweredoski MJ, Sohn CH, Hess S, Shan SO. Co-evolution of two GTPases enables efficient protein targeting in an RNA-less chloroplast Signal Recognition Particle pathway. The Journal of Biological Chemistry. PMID 27895118 DOI: 10.1074/Jbc.M116.752931  0.408
2016 Shan SO. ATPase and GTPase Tangos Drive Intracellular Protein Transport. Trends in Biochemical Sciences. PMID 27658684 DOI: 10.1016/J.Tibs.2016.08.012  0.506
2016 Liang FC, Kroon G, McAvoy CZ, Chi C, Wright PE, Shan SO. Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release. Proceedings of the National Academy of Sciences of the United States of America. PMID 26951662 DOI: 10.1073/Pnas.1524777113  0.557
2016 Rao M, Okreglak V, Chio US, Cho H, Walter P, Shan S. Author response: Multiple selection filters ensure accurate tail-anchored membrane protein targeting Elife. DOI: 10.7554/Elife.21301.015  0.808
2016 Wang C, Wang S, Niesen M, Shan S, Miller TF. Inversion of Signal Sequence Topology during Membrane Integration Biophysical Journal. 110: 226a-227a. DOI: 10.1016/J.Bpj.2015.11.1252  0.481
2015 Gristick HB, Rome ME, Chartron JW, Rao M, Hess S, Shan SO, Clemons WM. Mechanism of assembly of a substrate-transfer complex during tail-anchored protein targeting. The Journal of Biological Chemistry. PMID 26451041 DOI: 10.1074/Jbc.M115.677328  0.845
2015 Ariosa A, Lee JH, Wang S, Saraogi I, Shan SO. Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Proceedings of the National Academy of Sciences of the United States of America. 112: E3169-78. PMID 26056263 DOI: 10.1073/Pnas.1422594112  0.853
2015 von Loeffelholz O, Jiang Q, Ariosa A, Karuppasamy M, Huard K, Berger I, Shan SO, Schaffitzel C. Ribosome-SRP-FtsY cotranslational targeting complex in the closed state. Proceedings of the National Academy of Sciences of the United States of America. 112: 3943-8. PMID 25775537 DOI: 10.1073/Pnas.1424453112  0.848
2015 Liang F, McAvoy C, Piszkiewicz S, Kroon GJ, Yamout M, Wright P, Shan S. Inter-Domain Dynamics of a Novel Chaperone Enables Effective Capture of Membrane Protein Substrates Biophysical Journal. 108: 53a. DOI: 10.1016/J.Bpj.2014.11.323  0.559
2015 Fu YH, Shan S. Distinct Membrane Association Modes Facilitate Co-Translational Protein Targeting Biophysical Journal. 108. DOI: 10.1016/J.Bpj.2014.11.1401  0.541
2014 Rome ME, Chio US, Rao M, Gristick H, Shan SO. Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. Proceedings of the National Academy of Sciences of the United States of America. 111: E4929-35. PMID 25368153 DOI: 10.1073/Pnas.1411284111  0.833
2014 Saraogi I, Akopian D, Shan SO. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. The Journal of Cell Biology. 205: 693-706. PMID 24914238 DOI: 10.1083/Jcb.201311028  0.868
2014 Zhang X, Shan SO. Fidelity of cotranslational protein targeting by the signal recognition particle. Annual Review of Biophysics. 43: 381-408. PMID 24895856 DOI: 10.1146/Annurev-Biophys-051013-022653  0.641
2014 Gristick HB, Rao M, Chartron JW, Rome ME, Shan SO, Clemons WM. Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4. Nature Structural & Molecular Biology. 21: 437-42. PMID 24727835 DOI: 10.1038/Nsmb.2813  0.846
2014 Saraogi I, Shan SO. Co-translational protein targeting to the bacterial membrane. Biochimica Et Biophysica Acta. 1843: 1433-41. PMID 24513458 DOI: 10.1016/J.Bbamcr.2013.10.013  0.833
2014 Losón OC, Liu R, Rome ME, Meng S, Kaiser JT, Shan SO, Chan DC. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure (London, England : 1993). 22: 367-77. PMID 24508339 DOI: 10.1016/J.Str.2014.01.001  0.792
2013 Voigts-Hoffmann F, Schmitz N, Shen K, Shan SO, Ataide SF, Ban N. The structural basis of FtsY recruitment and GTPase activation by SRP RNA. Molecular Cell. 52: 643-54. PMID 24211265 DOI: 10.1016/J.Molcel.2013.10.005  0.67
2013 Shen K, Wang Y, Hwang Fu YH, Zhang Q, Feigon J, Shan SO. Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end. The Journal of Biological Chemistry. 288: 36385-97. PMID 24151069 DOI: 10.1074/Jbc.M113.513614  0.601
2013 Rome ME, Rao M, Clemons WM, Shan SO. Precise timing of ATPase activation drives targeting of tail-anchored proteins Proceedings of the National Academy of Sciences of the United States of America. 110: 7666-7671. PMID 23610396 DOI: 10.1073/Pnas.1222054110  0.841
2013 von Loeffelholz O, Knoops K, Ariosa A, Zhang X, Karuppasamy M, Huard K, Schoehn G, Berger I, Shan SO, Schaffitzel C. Structural basis of signal sequence surveillance and selection by the SRP-FtsY complex. Nature Structural & Molecular Biology. 20: 604-10. PMID 23563142 DOI: 10.1038/Nsmb.2546  0.846
2013 Nguyen TX, Jaru-Ampornpan P, Lam VQ, Cao P, Piszkiewicz S, Hess S, Shan SO. Mechanism of an ATP-independent protein disaggregase: I. structure of a membrane protein aggregate reveals a mechanism of recognition by its chaperone. The Journal of Biological Chemistry. 288: 13420-30. PMID 23525109 DOI: 10.1074/Jbc.M113.462812  0.811
2013 Jaru-Ampornpan P, Liang FC, Nisthal A, Nguyen TX, Wang P, Shen K, Mayo SL, Shan SO. Mechanism of an ATP-independent protein disaggregase: II. distinct molecular interactions drive multiple steps during aggregate disassembly. The Journal of Biological Chemistry. 288: 13431-45. PMID 23519468 DOI: 10.1074/Jbc.M113.462861  0.833
2013 Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RL, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell. 153: 206-15. PMID 23453757 DOI: 10.1016/J.Cell.2013.02.024  0.819
2013 Akopian D, Shen K, Zhang X, Shan SO. Signal recognition particle: an essential protein-targeting machine. Annual Review of Biochemistry. 82: 693-721. PMID 23414305 DOI: 10.1146/Annurev-Biochem-072711-164732  0.805
2013 Akopian D, Dalal K, Shen K, Duong F, Shan SO. SecYEG activates GTPases to drive the completion of cotranslational protein targeting. The Journal of Cell Biology. 200: 397-405. PMID 23401005 DOI: 10.1083/Jcb.201208045  0.803
2013 Ariosa AR, Duncan SS, Saraogi I, Lu X, Brown A, Phillips GJ, Shan SO. Fingerloop activates cargo delivery and unloading during cotranslational protein targeting. Molecular Biology of the Cell. 24: 63-73. PMID 23135999 DOI: 10.1091/Mbc.E12-06-0434  0.854
2013 Shen K, Arslan S, Akopian D, Ha T, Shan S. Activated GTPase Movement on SRP RNA Drives Cotranslational Protein Targeting Biophysical Journal. 104: 419a. DOI: 10.1016/J.Bpj.2012.11.2334  0.777
2012 Shen K, Arslan S, Akopian D, Ha T, Shan SO. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature. 492: 271-5. PMID 23235881 DOI: 10.1038/Nature11726  0.784
2012 Zhang D, Shan SO. Translation elongation regulates substrate selection by the signal recognition particle. The Journal of Biological Chemistry. 287: 7652-60. PMID 22228766 DOI: 10.1074/Jbc.M111.325001  0.615
2012 Zhang D, Sweredoski MJ, Graham RL, Hess S, Shan SO. Novel proteomic tools reveal essential roles of SRP and importance of proper membrane protein biogenesis. Molecular & Cellular Proteomics : McP. 11: M111.011585. PMID 22030350 DOI: 10.1074/Mcp.M111.011585  0.558
2011 Saraogi I, Akopian D, Shan SO. A tale of two GTPases in cotranslational protein targeting. Protein Science : a Publication of the Protein Society. 20: 1790-5. PMID 21898651 DOI: 10.1002/Pro.729  0.821
2011 Saraogi I, Zhang D, Chandrasekaran S, Shan SO. Site-specific fluorescent labeling of nascent proteins on the translating ribosome. Journal of the American Chemical Society. 133: 14936-9. PMID 21870811 DOI: 10.1021/Ja206626G  0.775
2011 Nguyen TX, Chandrasekar S, Neher S, Walter P, Shan SO. Concerted complex assembly and GTPase activation in the chloroplast signal recognition particle. Biochemistry. 50: 7208-17. PMID 21780778 DOI: 10.1021/Bi200742A  0.771
2011 Zhang X, Lam VQ, Mou Y, Kimura T, Chung J, Chandrasekar S, Winkler JR, Mayo SL, Shan SO. Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proceedings of the National Academy of Sciences of the United States of America. 108: 6450-5. PMID 21464281 DOI: 10.1073/Pnas.1019051108  0.475
2011 Shen K, Zhang X, Shan SO. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. Rna (New York, N.Y.). 17: 892-902. PMID 21460239 DOI: 10.1261/Rna.2610411  0.685
2011 Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA, Ban N. The crystal structure of the signal recognition particle in complex with its receptor. Science (New York, N.Y.). 331: 881-6. PMID 21330537 DOI: 10.1126/Science.1196473  0.693
2011 Saraogi I, Shan SO. Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic (Copenhagen, Denmark). 12: 535-42. PMID 21291501 DOI: 10.1111/J.1600-0854.2011.01171.X  0.815
2011 Estrozi LF, Boehringer D, Shan SO, Ban N, Schaffitzel C. Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nature Structural & Molecular Biology. 18: 88-90. PMID 21151118 DOI: 10.1038/Nsmb.1952  0.466
2010 Lam VQ, Akopian D, Rome M, Henningsen D, Shan SO. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. The Journal of Cell Biology. 190: 623-35. PMID 20733058 DOI: 10.1083/Jcb.201004129  0.864
2010 Zhang X, Rashid R, Wang K, Shan SO. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science (New York, N.Y.). 328: 757-60. PMID 20448185 DOI: 10.1126/Science.1186743  0.634
2010 Jaru-Ampornpan P, Shen K, Lam VQ, Ali M, Doniach S, Jia TZ, Shan SO. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit. Nature Structural & Molecular Biology. 17: 696-702. PMID 20424608 DOI: 10.1038/Nsmb.1836  0.854
2010 Shen K, Shan SO. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proceedings of the National Academy of Sciences of the United States of America. 107: 7698-703. PMID 20385832 DOI: 10.1073/Pnas.1002968107  0.665
2009 Jaru-Ampornpan P, Nguyen TX, Shan SO. A distinct mechanism to achieve efficient signal recognition particle (SRP)-SRP receptor interaction by the chloroplast srp pathway. Molecular Biology of the Cell. 20: 3965-73. PMID 19587121 DOI: 10.1091/Mbc.E08-10-0989  0.82
2009 Shan SO, Schmid SL, Zhang X. Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases. Biochemistry. 48: 6696-704. PMID 19469550 DOI: 10.1021/Bi9006989  0.464
2009 Zhang X, Schaffitzel C, Ban N, Shan SO. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proceedings of the National Academy of Sciences of the United States of America. 106: 1754-9. PMID 19174514 DOI: 10.1073/Pnas.0808573106  0.645
2008 Zhang X, Kung S, Shan SO. Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA. Journal of Molecular Biology. 381: 581-93. PMID 18617187 DOI: 10.1016/J.Jmb.2008.05.049  0.499
2008 Chandrasekar S, Chartron J, Jaru-Ampornpan P, Shan SO. Structure of the chloroplast signal recognition particle (SRP) receptor: domain arrangement modulates SRP-receptor interaction. Journal of Molecular Biology. 375: 425-36. PMID 18035371 DOI: 10.1016/J.Jmb.2007.09.061  0.774
2007 Shan SO, Chandrasekar S, Walter P. Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation. The Journal of Cell Biology. 178: 611-20. PMID 17682051 DOI: 10.1083/Jcb.200702018  0.695
2007 Jaru-Ampornpan P, Chandrasekar S, Shan SO. Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA. Molecular Biology of the Cell. 18: 2636-45. PMID 17475780 DOI: 10.1091/Mbc.E07-01-0037  0.783
2005 Shan SO, Walter P. Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor. Biochemistry. 44: 6214-22. PMID 15835909 DOI: 10.1021/Bi0500980  0.648
2005 Shan SO, Walter P. Co-translational protein targeting by the signal recognition particle. Febs Letters. 579: 921-6. PMID 15680975 DOI: 10.1016/J.Febslet.2004.11.049  0.686
2004 Chu F, Shan SO, Moustakas DT, Alber F, Egea PF, Stroud RM, Walter P, Burlingame AL. Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America. 101: 16454-9. PMID 15546976 DOI: 10.1073/Pnas.0407456101  0.791
2004 Shan SO, Stroud RM, Walter P. Mechanism of association and reciprocal activation of two GTPases. Plos Biology. 2: e320. PMID 15383838 DOI: 10.1371/Journal.Pbio.0020320  0.642
2004 Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM. Substrate twinning activates the signal recognition particle and its receptor. Nature. 427: 215-21. PMID 14724630 DOI: 10.1038/Nature02250  0.833
2003 Shan SO, Walter P. Induced nucleotide specificity in a GTPase. Proceedings of the National Academy of Sciences of the United States of America. 100: 4480-5. PMID 12663860 DOI: 10.1073/Pnas.0737693100  0.65
2002 Shan SO, Herschlag D. Dissection of a metal-ion-mediated conformational change in Tetrahymena ribozyme catalysis. Rna (New York, N.Y.). 8: 861-72. PMID 12166641 DOI: 10.1017/S1355838202020216  0.524
2001 Peluso P, Shan SO, Nock S, Herschlag D, Walter P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry. 40: 15224-33. PMID 11735405 DOI: 10.1021/Bi011639Y  0.802
2001 Shan S, Kravchuk AV, Piccirilli JA, Herschlag D. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry. 40: 5161-71. PMID 11318638 DOI: 10.1021/Bi002887H  0.519
2000 Shan SO, Herschlag D. An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction. Rna (New York, N.Y.). 6: 795-813. PMID 10864040 DOI: 10.1017/S1355838200000649  0.505
2000 Yoshida A, Shan So, Herschlag D, Piccirilli JA. The role of the cleavage site 2'-hydroxyl in the Tetrahymena group I ribozyme reaction. Chemistry & Biology. 7: 85-96. PMID 10662698 DOI: 10.1016/S1074-5521(00)00074-0  0.488
1999 Shan So, Yoshida A, Sun S, Piccirilli JA, Herschlag D. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proceedings of the National Academy of Sciences of the United States of America. 96: 12299-304. PMID 10535916 DOI: 10.1073/Pnas.96.22.12299  0.483
1999 Shan SO, Herschlag D. Hydrogen bonding in enzymatic catalysis: analysis of energetic contributions. Methods in Enzymology. 308: 246-76. PMID 10507008 DOI: 10.1016/S0076-6879(99)08013-1  0.497
1999 Shan SO, Narlikar GJ, Herschlag D. Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme. Biochemistry. 38: 10976-88. PMID 10460152 DOI: 10.1021/Bi9903897  0.696
1999 Shan SO, Herschlag D. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Biochemistry. 38: 10958-75. PMID 10460151 DOI: 10.1021/Bi990388E  0.51
1997 Herschlag D, Narlikar QJ, Peracchi A, Shan S. Biological catalysis: Lessons from the comparison of RNA and protein enzymes Faseb Journal. 11: A852.  0.518
1996 Shan SO, Herschlag D. The change in hydrogen bond strength accompanying charge rearrangement: implications for enzymatic catalysis. Proceedings of the National Academy of Sciences of the United States of America. 93: 14474-9. PMID 8962076 DOI: 10.1073/Pnas.93.25.14474  0.474
1996 Shan SO, Loh S, Herschlag D. The energetics of hydrogen bonds in model systems: implications for enzymatic catalysis. Science (New York, N.Y.). 272: 97-101. PMID 8600542 DOI: 10.1126/Science.272.5258.97  0.46
1996 Shan S, Herschlag D. Energetic effects of multiple hydrogen bonds. Implications for enzymatic catalysis Journal of the American Chemical Society. 118: 5515-5518. DOI: 10.1021/Ja954205X  0.482
Show low-probability matches.