Year |
Citation |
Score |
2025 |
Liu Y, Jin L, Pandey T, Sun H, Liu Y, Li X, Rodriguez A, Wang Y, Zhou T, Chen R, Sun Y, Yang Y, Chrzan DC, Lindsay L, Wu J, et al. Anomalous thermal transport in Eshelby twisted van der Waals nanowires. Nature Materials. PMID 39939670 DOI: 10.1038/s41563-024-02108-3 |
0.435 |
|
2024 |
Jiang H, Wang T, Zhang Z, Liu F, Shi R, Sheng B, Sheng S, Ge W, Wang P, Shen B, Sun B, Gao P, Lindsay L, Wang X. Atomic-scale visualization of defect-induced localized vibrations in GaN. Nature Communications. 15: 9052. PMID 39426978 DOI: 10.1038/s41467-024-53394-z |
0.332 |
|
2023 |
Pan Z, Lu G, Li X, McBride JR, Juneja R, Long M, Lindsay L, Caldwell JD, Li D. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature. PMID 37880364 DOI: 10.1038/s41586-023-06598-0 |
0.431 |
|
2021 |
Shi W, Pandey T, Lindsay L, Woods LM. Vibrational properties and thermal transport in quaternary chalcogenides: The case of Te-based compositions Physical Review Materials. 5. DOI: 10.1103/PHYSREVMATERIALS.5.045401 |
0.334 |
|
2020 |
Pandey T, Lindsay L, Sales BC, Parker DS. Lattice instabilities and phonon thermal transport in TlBr Physical Review Materials. 4: 45403. DOI: 10.1103/Physrevmaterials.4.045403 |
0.559 |
|
2020 |
Polanco CA, Pandey T, Berlijn T, Lindsay L. Defect-limited thermal conductivity in
MoS2 Physical Review Materials. 4. DOI: 10.1103/Physrevmaterials.4.014004 |
0.506 |
|
2020 |
Hua C, Lindsay L. Space-time dependent thermal conductivity in nonlocal thermal transport Physical Review B. 102. DOI: 10.1103/PHYSREVB.102.104310 |
0.407 |
|
2020 |
Li H, Hanus R, Polanco CA, Zeidler A, Koblmüller G, Koh YK, Lindsay L. GaN thermal transport limited by the interplay of dislocations and size effects Physical Review B. 102: 14313. DOI: 10.1103/Physrevb.102.014313 |
0.465 |
|
2019 |
Mu S, Hermann RP, Gorsse S, Zhao H, Manley ME, Fishman RS, Lindsay L. Phonons, magnons, and lattice thermal transport in antiferromagnetic semiconductor MnTe Physical Review Materials. 3. DOI: 10.1103/Physrevmaterials.3.025403 |
0.541 |
|
2019 |
Polanco CA, Lindsay L. Phonon thermal conductance across GaN-AlN interfaces from first principles Physical Review B. 99. DOI: 10.1103/PHYSREVB.99.075202 |
0.454 |
|
2019 |
Feldman MA, Puretzky A, Lindsay L, Tucker E, Briggs DP, Evans PG, Haglund RF, Lawrie BJ. Phonon-induced multicolor correlations in hBN single-photon emitters Physical Review B. 99. DOI: 10.1103/Physrevb.99.020101 |
0.309 |
|
2019 |
Chou T, Lindsay L, Maznev AA, Gandhi JS, Stokes DW, Forrest RL, Bensaoula A, Nelson KA, Sun C. Long mean free paths of room-temperature THz acoustic phonons in a high thermal conductivity material Physical Review B. 100. DOI: 10.1103/Physrevb.100.094302 |
0.531 |
|
2019 |
Fan H, Wu H, Lindsay L, Hu Y. Ab initio
investigation of single-layer high thermal conductivity boron compounds Physical Review B. 100. DOI: 10.1103/Physrevb.100.085420 |
0.454 |
|
2019 |
Hua C, Lindsay L, Chen X, Minnich AJ. Generalized Fourier's law for nondiffusive thermal transport: Theory and experiment Physical Review B. 100. DOI: 10.1103/Physrevb.100.085203 |
0.478 |
|
2019 |
Lindsay L, Katre A, Cepellotti A, Mingo N. Perspective on ab initio phonon thermal transport Journal of Applied Physics. 126: 50902. DOI: 10.1063/1.5108651 |
0.525 |
|
2019 |
Smith B, Lindsay L, Kim J, Ou E, Huang R, Shi L. Phonon interaction with ripples and defects in thin layered molybdenum disulfide Applied Physics Letters. 114: 221902. DOI: 10.1063/1.5099103 |
0.521 |
|
2019 |
Yuan C, Li J, Lindsay L, Cherns D, Pomeroy JW, Liu S, Edgar JH, Kuball M. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration Communications Physics. 2. DOI: 10.1038/S42005-019-0145-5 |
0.54 |
|
2019 |
Zheng Q, Polanco CA, Du M, Lindsay LR, Chi M, Yan J, Sales BC. Atomic-Scale Study of Intrinsic Defects Suppressing the Thermal Conductivity of Boron Arsenide Microscopy and Microanalysis. 25: 942-943. DOI: 10.1017/S1431927619005440 |
0.344 |
|
2018 |
Sun B, Haunschild G, Polanco C, Ju JZ, Lindsay L, Koblmüller G, Koh YK. Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films. Nature Materials. PMID 30559413 DOI: 10.1038/S41563-018-0250-Y |
0.522 |
|
2018 |
Li C, Ravichandran NK, Lindsay L, Broido D. Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport. Physical Review Letters. 121: 175901. PMID 30411930 DOI: 10.1103/Physrevlett.121.175901 |
0.639 |
|
2018 |
Zheng Q, Polanco CA, Du MH, Lindsay LR, Chi M, Yan J, Sales BC. Antisite Pairs Suppress the Thermal Conductivity of BAs. Physical Review Letters. 121: 105901. PMID 30240242 DOI: 10.1103/Physrevlett.121.105901 |
0.378 |
|
2018 |
Mukhopadhyay S, Parker DS, Sales BC, Puretzky AA, McGuire MA, Lindsay L. Two-channel model for ultralow thermal conductivity of crystalline TlVSe. Science (New York, N.Y.). 360: 1455-1458. PMID 29954978 DOI: 10.1126/Science.Aar8072 |
0.503 |
|
2018 |
Jiang P, Qian X, Yang R, Lindsay L. Anisotropic thermal transport in bulk hexagonal boron nitride Physical Review Materials. 2. DOI: 10.1103/Physrevmaterials.2.064005 |
0.557 |
|
2018 |
Pandey T, Polanco CA, Cooper VR, Parker DS, Lindsay L. Symmetry-driven phonon chirality and transport in one-dimensional and bulk
Ba3N
-derived materials Physical Review B. 98. DOI: 10.1103/Physrevb.98.241405 |
0.408 |
|
2018 |
Polanco CA, Lindsay L. Thermal conductivity of InN with point defects from first principles Physical Review B. 98. DOI: 10.1103/Physrevb.98.014306 |
0.521 |
|
2018 |
Jiang P, Lindsay L, Huang X, Koh YK. Interfacial phonon scattering and transmission loss in
>1
µm thick silicon-on-insulator thin films Physical Review B. 97. DOI: 10.1103/Physrevb.97.195308 |
0.454 |
|
2018 |
Polanco CA, Lindsay L. Ab initio
phonon point defect scattering and thermal transport in graphene Physical Review B. 97. DOI: 10.1103/PHYSREVB.97.014303 |
0.454 |
|
2018 |
Lindsay L, Hua C, Ruan XL, Lee S. Survey of ab initio phonon thermal transport Materials Today Physics. 7: 106-120. DOI: 10.1016/J.Mtphys.2018.11.008 |
0.532 |
|
2017 |
Giles AJ, Dai S, Vurgaftman I, Hoffman T, Liu S, Lindsay L, Ellis CT, Assefa N, Chatzakis I, Reinecke TL, Tischler JG, Fogler MM, Edgar JH, Basov DN, Caldwell JD. Ultralow-loss polaritons in isotopically pure boron nitride. Nature Materials. PMID 29251721 DOI: 10.1038/Nmat5047 |
0.333 |
|
2017 |
Pandey T, Parker DS, Lindsay L. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys. Nanotechnology. 28: 455706. PMID 29039363 DOI: 10.1088/1361-6528/Aa8B39 |
0.507 |
|
2017 |
Pandey T, Parker D, Lindsay L. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys. Nanotechnology. PMID 28885188 DOI: 10.1088/1361-6528/aa8b39 |
0.396 |
|
2017 |
Feng T, Lindsay L, Ruan X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids Physical Review B. 96. DOI: 10.1103/Physrevb.96.161201 |
0.554 |
|
2017 |
Mukhopadhyay S, Bansal D, Delaire O, Perrodin D, Bourret-Courchesne E, Singh DJ, Lindsay L. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting Physical Review B. 96. DOI: 10.1103/Physrevb.96.100301 |
0.463 |
|
2017 |
Pandey T, Polanco CA, Lindsay L, Parker DS. Lattice thermal transport in
La3Cu3X4
compounds
(X=P,As,Sb,Bi)
: Interplay of anharmonicity and scattering phase space Physical Review B. 95. DOI: 10.1103/Physrevb.95.224306 |
0.429 |
|
2017 |
Lee S, Lindsay L. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube Physical Review B. 95: 184304. DOI: 10.1103/Physrevb.95.184304 |
0.313 |
|
2017 |
Lindsay L, Kuang Y. Effects of functional group mass variance on vibrational properties and thermal transport in graphene Physical Review B. 95. DOI: 10.1103/PHYSREVB.95.121404 |
0.352 |
|
2017 |
Protik NH, Katre A, Lindsay L, Carrete J, Mingo N, Broido D. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles Materials Today Physics. 1: 31-38. DOI: 10.1016/J.Mtphys.2017.05.004 |
0.73 |
|
2016 |
Mukhopadhyay S, Lindsay L, Singh DJ. Optic phonons and anisotropic thermal conductivity in hexagonal Ge2Sb2Te5. Scientific Reports. 6: 37076. PMID 27848985 DOI: 10.1038/Srep37076 |
0.504 |
|
2016 |
Kuang YD, Lindsay L, Shi SQ, Zheng GP. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale. PMID 26815838 DOI: 10.1039/C5Nr08231E |
0.409 |
|
2016 |
Ma H, Li C, Tang S, Yan J, Alatas A, Lindsay L, Sales BC, Tian Z. Boron arsenide phonon dispersion from inelastic x-ray scattering: Potential for ultrahigh thermal conductivity Physical Review B. 94. DOI: 10.1103/Physrevb.94.220303 |
0.469 |
|
2016 |
Lindsay L. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF Physical Review B. 94. DOI: 10.1103/PHYSREVB.94.174304 |
0.38 |
|
2016 |
Mukhopadhyay S, Lindsay L, Parker DS. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X= O, S, Se, Te) Physical Review B - Condensed Matter and Materials Physics. 93. DOI: 10.1103/Physrevb.93.224301 |
0.512 |
|
2016 |
Carrete J, Li W, Lindsay L, Broido DA, Gallego LJ, Mingo N. Physically founded phonon dispersions of few-layer materials and the case of borophene Materials Research Letters. 4: 204-211. DOI: 10.1080/21663831.2016.1174163 |
0.654 |
|
2016 |
Lindsay L. First Principles Peierls-Boltzmann Phonon Thermal Transport: A Topical Review Nanoscale and Microscale Thermophysical Engineering. 20: 67-84. DOI: 10.1080/15567265.2016.1218576 |
0.489 |
|
2016 |
Coloyan G, Cultrara ND, Katre A, Carrete J, Heine M, Ou E, Kim J, Jiang S, Lindsay L, Mingo N, Broido D, Heremans JP, Goldberger J, Shi L. Basal-plane thermal conductivity of nanocrystalline and amorphized thin germanane Applied Physics Letters. 109. DOI: 10.1063/1.4963704 |
0.721 |
|
2016 |
Kuang Y, Lindsay L, Shi S, Wang X, Huang B. Thermal conductivity of graphene mediated by strain and size International Journal of Heat and Mass Transfer. 101: 772-778. DOI: 10.1016/J.Ijheatmasstransfer.2016.05.072 |
0.445 |
|
2015 |
Kuang Y, Lindsay L, Huang B. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains. Nano Letters. 15: 6121-7. PMID 26241731 DOI: 10.1021/Acs.Nanolett.5B02403 |
0.348 |
|
2015 |
Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL, Maier SA, Glembocki OJ. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons Nanophotonics. 4: 44-68. DOI: 10.1515/Nanoph-2014-0003 |
0.355 |
|
2015 |
Lindsay L, Parker DS. Calculated transport properties of CdO: Thermal conductivity and thermoelectric power factor Physical Review B - Condensed Matter and Materials Physics. 92. DOI: 10.1103/PhysRevB.92.144301 |
0.367 |
|
2015 |
Lindsay L, Broido DA, Carrete J, Mingo N, Reinecke TL. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds Physical Review B - Condensed Matter and Materials Physics. 91. DOI: 10.1103/Physrevb.91.121202 |
0.646 |
|
2015 |
Jo I, Pettes MT, Lindsay L, Ou E, Weathers A, Moore AL, Yao Z, Shi L. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods Aip Advances. 5. DOI: 10.1063/1.4921519 |
0.532 |
|
2014 |
Lindsay L, Li W, Carrete J, Mingo N, Broido DA, Reinecke TL. Phonon thermal transport in strained and unstrained graphene from first principles Physical Review B - Condensed Matter and Materials Physics. 89. DOI: 10.1103/Physrevb.89.155426 |
0.697 |
|
2014 |
Mahan GD, Lindsay L, Broido DA. The Seebeck coefficient and phonon drag in silicon Journal of Applied Physics. 116. DOI: 10.1063/1.4904925 |
0.623 |
|
2014 |
Mingo N, Stewart DA, Broido DA, Lindsay L, Li W. Ab initio thermal transport Topics in Applied Physics. 128: 137-173. DOI: 10.1007/978-1-4614-8651-0__5 |
0.379 |
|
2013 |
Lindsay L, Broido DA, Reinecke TL. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Physical Review Letters. 111: 025901. PMID 23889420 DOI: 10.1103/Physrevlett.111.025901 |
0.741 |
|
2013 |
Lindsay L, Broido DA, Reinecke TL. First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond? Physical Review Letters. 111. DOI: 10.1103/PhysRevLett.111.025901 |
0.693 |
|
2013 |
Broido DA, Lindsay L, Reinecke TL. Ab initio study of the unusual thermal transport properties of boron arsenide and related materials Physical Review B - Condensed Matter and Materials Physics. 88. DOI: 10.1103/Physrevb.88.214303 |
0.68 |
|
2013 |
Lindsay L, Broido DA, Reinecke TL. Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study Physical Review B - Condensed Matter and Materials Physics. 88. DOI: 10.1103/Physrevb.88.144306 |
0.74 |
|
2013 |
Lindsay L, Broido DA, Reinecke TL. Ab initio thermal transport in compound semiconductors Physical Review B - Condensed Matter and Materials Physics. 87. DOI: 10.1103/Physrevb.87.165201 |
0.75 |
|
2012 |
Lindsay L, Broido DA, Reinecke TL. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters. 109: 095901. PMID 23002858 DOI: 10.1103/Physrevlett.109.095901 |
0.747 |
|
2012 |
Lindsay L, Broido DA, Reinecke TL. Thermal conductivity and large isotope effect in GaN from first principles Physical Review Letters. 109. DOI: 10.1103/PhysRevLett.109.095901 |
0.686 |
|
2012 |
Li W, Lindsay L, Broido DA, Stewart DA, Mingo N. Thermal conductivity of bulk and nanowire Mg2Si xSn1-x alloys from first principles Physical Review B - Condensed Matter and Materials Physics. 86. DOI: 10.1103/Physrevb.86.174307 |
0.629 |
|
2012 |
Broido DA, Lindsay L, Ward A. Thermal conductivity of diamond under extreme pressure: A first-principles study Physical Review B - Condensed Matter and Materials Physics. 86. DOI: 10.1103/Physrevb.86.115203 |
0.683 |
|
2012 |
Li W, Mingo N, Lindsay L, Broido DA, Stewart DA, Katcho NA. Thermal conductivity of diamond nanowires from first principles Physical Review B - Condensed Matter and Materials Physics. 85. DOI: 10.1103/Physrevb.85.195436 |
0.661 |
|
2012 |
Lindsay L, Broido DA. Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes Physical Review B - Condensed Matter and Materials Physics. 85. DOI: 10.1103/Physrevb.85.035436 |
0.716 |
|
2011 |
Lindsay L, Broido DA. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride Physical Review B - Condensed Matter and Materials Physics. 84. DOI: 10.1103/Physrevb.84.155421 |
0.682 |
|
2011 |
Lindsay L, Broido DA, Mingo N. Flexural phonons and thermal transport in multilayer graphene and graphite Physical Review B - Condensed Matter and Materials Physics. 83. DOI: 10.1103/Physrevb.83.235428 |
0.701 |
|
2010 |
Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L. Two-dimensional phonon transport in supported graphene. Science (New York, N.Y.). 328: 213-6. PMID 20378814 DOI: 10.1126/Science.1184014 |
0.658 |
|
2010 |
Lindsay L, Broido DA. Erratum: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene [Phys. Rev. B81, 205441 (2010)] Physical Review B. 82. DOI: 10.1103/PHYSREVB.82.209903 |
0.647 |
|
2010 |
Lindsay L, Broido DA, Mingo N. Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit Physical Review B - Condensed Matter and Materials Physics. 82. DOI: 10.1103/Physrevb.82.161402 |
0.677 |
|
2010 |
Lindsay L, Broido DA, Mingo N. Flexural phonons and thermal transport in graphene Physical Review B - Condensed Matter and Materials Physics. 82. DOI: 10.1103/Physrevb.82.115427 |
0.717 |
|
2010 |
Lindsay L, Broido DA. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene Physical Review B - Condensed Matter and Materials Physics. 81. DOI: 10.1103/Physrevb.81.205441 |
0.675 |
|
2009 |
Lindsay L, Broido DA, Mingo N. Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules Physical Review B - Condensed Matter and Materials Physics. 80. DOI: 10.1103/Physrevb.80.125407 |
0.726 |
|
2008 |
Lindsay L, Broido DA. Three-phonon phase space and lattice thermal conductivity in semiconductors Journal of Physics Condensed Matter. 20. DOI: 10.1088/0953-8984/20/16/165209 |
0.694 |
|
Show low-probability matches. |