Lyudmila V. Slipchenko - Publications

Affiliations: 
Chemistry Purdue University, West Lafayette, IN, United States 
Area:
electronic structure, electronic excited states, and intermolecular interactions in the condensed phase
Website:
http://www.chem.purdue.edu/people/faculty/faculty.asp?itemID=84

79 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Bredt AJ, Kim Y, Mendes de Oliveira D, Urbina AS, Slipchenko LV, Ben-Amotz D. Expulsion of Hydroxide Ions from Methyl Hydration Shells. The Journal of Physical Chemistry. B. PMID 35077175 DOI: 10.1021/acs.jpcb.1c08420  0.774
2021 Epifanovsky E, Gilbert ATB, Feng X, Lee J, Mao Y, Mardirossian N, Pokhilko P, White AF, Coons MP, Dempwolff AL, Gan Z, Hait D, Horn PR, Jacobson LD, Kaliman I, ... ... Slipchenko LV, et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. The Journal of Chemical Physics. 155: 084801. PMID 34470363 DOI: 10.1063/5.0055522  0.723
2021 Wilson VR, Mugheirbi NA, Mosquera-Giraldo LI, Deac A, Moseson DE, Smith DT, Novo DC, Borca CH, Slipchenko LV, Edgar KJ, Taylor LS. Interaction of Polymers with Enzalutamide Nanodroplets-Impact on Droplet Properties and Induction Times. Molecular Pharmaceutics. PMID 33539105 DOI: 10.1021/acs.molpharmaceut.0c00833  0.703
2020 Kim Y, Bui Y, Tazhigulov RN, Bravaya KB, Slipchenko LV. Effective Fragment Potentials for Flexible Molecules: Transferability of Parameters and Amino Acid Database. Journal of Chemical Theory and Computation. PMID 33236635 DOI: 10.1021/acs.jctc.0c00758  0.78
2020 Viquez Rojas CI, Slipchenko LV. Exchange-repulsion in QM/EFP excitation energies - beyond polarizable embedding. Journal of Chemical Theory and Computation. PMID 32786899 DOI: 10.1021/Acs.Jctc.9B01156  0.472
2020 Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, ... ... Slipchenko L, et al. Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics. 152: 154102. PMID 32321259 DOI: 10.1063/5.0005188  0.784
2020 Herbers S, Fritz SM, Mishra P, Kim Y, Slipchenko L, Zwier TS. The unusual symmetry of hexafluoro-o-xylene-A microwave spectroscopy and computational study. The Journal of Chemical Physics. 152: 064302. PMID 32061218 DOI: 10.1063/1.5142169  0.794
2020 Kim Y, Morozov D, Stadnytskyi V, Savikhin S, Slipchenko L. Predictive First-principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex. The Journal of Physical Chemistry Letters. PMID 32013435 DOI: 10.1021/Acs.Jpclett.9B03486  0.804
2019 Kaliakin DS, Nakata H, Kim Y, Chen Q, Fedorov DG, Slipchenko L. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation. PMID 31841349 DOI: 10.1021/Acs.Jctc.9B00621  0.825
2019 Kidwell NM, Nebgen B, Slipchenko LV, Zwier TS. The effects of site asymmetry on near-degenerate state-to-state vibronic mixing in flexible bichromophores. The Journal of Chemical Physics. 151: 084313. PMID 31470719 DOI: 10.1063/1.5107423  0.333
2019 Tazhigulov RN, Gurunathan PK, Kim Y, Slipchenko LV, Bravaya KB. Polarizable embedding for simulating redox potentials of biomolecules. Physical Chemistry Chemical Physics : Pccp. PMID 31116217 DOI: 10.1039/C9Cp01533G  0.767
2018 Mosquera-Giraldo LI, Borca CH, Parker AS, Dong Y, Edgar KJ, Beaudoin SP, Slipchenko LV, Taylor LS. Crystallization Inhibition Properties of Cellulose Esters and Ethers for a Group of Chemically Diverse Drugs - Experimental and Computational Insight. Biomacromolecules. PMID 30376299 DOI: 10.1021/Acs.Biomac.8B01280  0.731
2018 Viquez Rojas CI, Fine J, Slipchenko LV. Exchange-repulsion energy in QM/EFP. The Journal of Chemical Physics. 149: 094103. PMID 30195305 DOI: 10.1063/1.5043107  0.477
2018 Hartzler DA, Slipchenko LV, Savikhin S. Triplet-Triplet Coupling in Chromophore Dimers: Theory and Experiment. The Journal of Physical Chemistry. A. PMID 30040412 DOI: 10.1021/Acs.Jpca.8B04294  0.387
2018 Mugheirbi N, Mosquera-Giraldo LI, Borca CH, Slipchenko LV, Taylor LS. Phase Behavior of Drug-Hydroxypropyl Methylcellulose Amorphous Solid Dispersions Produced from Various Solvent Systems: Mechanistic Understanding of the Role of Polymer using Experimental and Theoretical Methods. Molecular Pharmaceutics. PMID 29874454 DOI: 10.1021/Acs.Molpharmaceut.8B00324  0.734
2017 Slipchenko LV, Gordon MS, Ruedenberg K. Dispersion Interactions in QM/EFP. The Journal of Physical Chemistry. A. PMID 29120179 DOI: 10.1021/Acs.Jpca.7B05875  0.555
2017 Dubinets NO, Slipchenko LV. Effective Fragment Potential Method for H-Bonding: How to Obtain Parameters for Non-Rigid Fragments. The Journal of Physical Chemistry. A. PMID 28587456 DOI: 10.1021/Acs.Jpca.7B01701  0.401
2017 Bertoni C, Slipchenko LV, Misquitta AJ, Gordon MS. Multipole Moments in the Effective Fragment Potential Method. The Journal of Physical Chemistry. A. PMID 28211686 DOI: 10.1021/Acs.Jpca.7B00682  0.542
2017 Tyler SF, Judkins EC, Morozov D, Borca CH, Slipchenko LV, McMillin DR. To Be or Not To Be Symmetric: That Is the Question for Potentially Active Vibronic Modes Journal of Chemical Education. 94: 1232-1237. DOI: 10.1021/Acs.Jchemed.7B00289  0.761
2016 Mosquera-Giraldo LI, Borca CH, Meng X, Edgar KJ, Slipchenko LV, Taylor LS. Mechanistic Design of Chemically Diverse Polymers with Applications in Oral Drug Delivery. Biomacromolecules. PMID 27715018 DOI: 10.1021/Acs.Biomac.6B01156  0.739
2016 Borca CH, Slipchenko LV, Wasserman A. Ground-State Charge Transfer: Lithium-Benzene and the Role of Hartree-Fock Exchange. The Journal of Physical Chemistry. A. PMID 27661445 DOI: 10.1021/Acs.Jpca.6B09014  0.748
2016 Gurunathan PK, Acharya A, Ghosh D, Kosenkov D, Kaliman I, Shao Y, Krylov AI, Slipchenko LV. The Extension of the Effective Fragment Potential Method to Macromolecules. The Journal of Physical Chemistry. B. PMID 27314461 DOI: 10.1021/Acs.Jpcb.6B04166  0.772
2016 Stoller RE, Tamm A, Béland LK, Samolyuk GD, Stocks GM, Caro A, Slipchenko LV, Osetsky YN, Aabloo A, Klintenberg M, Wang Y. The Impact of Short-range Forces on Defect Production from High-energy Collisions. Journal of Chemical Theory and Computation. PMID 27110927 DOI: 10.1021/Acs.Jctc.5B01194  0.344
2016 Green MC, Dubnicka LJ, Davis AC, Rypkema HA, Francisco JS, Slipchenko LV. Thermodynamics and Kinetics for the Free Radical Oxygen Protein Oxidation Pathway in a Model for β-structured Peptides. The Journal of Physical Chemistry. A. PMID 27055125 DOI: 10.1021/Acs.Jpca.5B12549  0.55
2016 Xiong F, Borca CH, Slipchenko LV, Shepson PB. Photochemical Degradation of Isoprene-derived 4,1-Carbonyl Nitrate Atmospheric Chemistry and Physics. 1-40. DOI: 10.5194/Acp-2016-74  0.71
2016 Xiong F, Borca CH, Slipchenko LV, Shepson PB. Photochemical degradation of isoprene-derived 4,1-nitrooxy enal Atmospheric Chemistry and Physics. 16: 5595-5610. DOI: 10.5194/Acp-16-5595-2016  0.72
2016 Rindelaub JD, Borca CH, Hostetler MA, Slade JH, Lipton MA, Slipchenko LV, Shepson PB. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact Atmospheric Chemistry and Physics. 16: 15425-15432. DOI: 10.5194/Acp-16-15425-2016  0.72
2016 Li N, Mosquera-Giraldo LI, Borca CH, Ormes JD, Lowinger M, Higgins JD, Slipchenko LV, Taylor LS. A Comparison of the Crystallization Inhibition Properties of Bile Salts Crystal Growth & Design. 16: 7286-7300. DOI: 10.1021/Acs.Cgd.6B01470  0.728
2016 Green MC, Nakata H, Fedorov DG, Slipchenko LV. Radical damage in lipids investigated with the fragment molecular orbital method Chemical Physics Letters. 651: 56-61. DOI: 10.1016/J.Cplett.2016.03.014  0.617
2015 Esselman BJ, Emmert FL, Wiederhold AJ, Thompson SJ, Slipchenko LV, McMahon RJ. Thermal Isomerizations of Diethynyl Cyclobutadienes and Implications for Fullerene Formation. The Journal of Organic Chemistry. PMID 26509879 DOI: 10.1021/Acs.Joc.5B01864  0.758
2015 Gordon MS, Slipchenko LV. Introduction: Calculations on Large Systems. Chemical Reviews. 115: 5605-6. PMID 26104040 DOI: 10.1021/Acs.Chemrev.5B00285  0.456
2015 Kaliman IA, Slipchenko LV. Hybrid MPI/OpenMP parallelization of the effective fragment potential method in the libefp software library. Journal of Computational Chemistry. 36: 129-35. PMID 25394274 DOI: 10.1002/Jcc.23772  0.785
2014 Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV. Erratum: Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set. Journal of Chemical Theory and Computation. 10: 4759-60. PMID 26588163 DOI: 10.1021/ct500658b  0.553
2014 Nebgen B, Slipchenko LV. Vibronic coupling in asymmetric bichromophores: theory and application to diphenylmethane-d(5). The Journal of Chemical Physics. 141: 134119. PMID 25296796 DOI: 10.1063/1.4896561  0.354
2014 Hoffman GJ, Gurunathan PK, Francisco JS, Slipchenko LV. Excited states of OH-(H₂O)n clusters for n = 1-4: an ab initio study. The Journal of Chemical Physics. 141: 104315. PMID 25217924 DOI: 10.1063/1.4894772  0.798
2014 Pillsbury NR, Kidwell NM, Nebgen B, Slipchenko LV, Douglass KO, Cable JR, Plusquellic DF, Zwier TS. Vibronic coupling in asymmetric bichromophores: experimental investigation of diphenylmethane-d₅. The Journal of Chemical Physics. 141: 064316. PMID 25134580 DOI: 10.1063/1.4892344  0.314
2013 Kaliman IA, Slipchenko LV. LIBEFP: A new parallel implementation of the effective fragment potential method as a portable software library. Journal of Computational Chemistry. 34: 2284-92. PMID 24159627 DOI: 10.1002/Jcc.23375  0.796
2013 Anglada JM, Hoffman GJ, Slipchenko LV, Costa MM, Ruiz-López MF, Francisco JS. Atmospheric significance of water clusters and ozone-water complexes. The Journal of Physical Chemistry. A. 117: 10381-96. PMID 24028451 DOI: 10.1021/Jp407282C  0.309
2013 Kidwell NM, Reilly NJ, Nebgen B, Mehta-Hurt DN, Hoehn RD, Kokkin DL, McCarthy MC, Slipchenko LV, Zwier TS. Jet-cooled spectroscopy of the α-methylbenzyl radical: probing the state-dependent effects of methyl rocking against a radical site. The Journal of Physical Chemistry. A. 117: 13465-80. PMID 23964703 DOI: 10.1021/Jp406945U  0.335
2013 Rankin BM, Hands MD, Wilcox DS, Fega KR, Slipchenko LV, Ben-Amotz D. Interactions between halide anions and a molecular hydrophobic interface. Faraday Discussions. 160: 255-70; discussion 3. PMID 23795504 DOI: 10.1039/C2Fd20082A  0.365
2013 Gordon MS, Smith QA, Xu P, Slipchenko LV. Accurate first principles model potentials for intermolecular interactions. Annual Review of Physical Chemistry. 64: 553-78. PMID 23561011 DOI: 10.1146/Annurev-Physchem-040412-110031  0.822
2013 Green MC, Fedorov DG, Kitaura K, Francisco JS, Slipchenko LV. Open-shell pair interaction energy decomposition analysis (PIEDA): formulation and application to the hydrogen abstraction in tripeptides. The Journal of Chemical Physics. 138: 074111. PMID 23445001 DOI: 10.1063/1.4790616  0.636
2013 Ghosh D, Kosenkov D, Vanovschi V, Flick J, Kaliman I, Shao Y, Gilbert AT, Krylov AI, Slipchenko LV. Effective fragment potential method in Q-CHEM: a guide for users and developers. Journal of Computational Chemistry. 34: 1060-70. PMID 23319180 DOI: 10.1002/Jcc.23223  0.79
2012 Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV. Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set. Journal of Chemical Theory and Computation. 8: 2835-43. PMID 26592124 DOI: 10.1021/Ct200673A  0.625
2012 Nebgen B, Emmert FL, Slipchenko LV. Vibronic coupling in asymmetric bichromophores: theory and application to diphenylmethane. The Journal of Chemical Physics. 137: 084112. PMID 22938223 DOI: 10.1063/1.4747336  0.779
2012 Smith QA, Ruedenberg K, Gordon MS, Slipchenko LV. The dispersion interaction between quantum mechanics and effective fragment potential molecules. The Journal of Chemical Physics. 136: 244107. PMID 22755565 DOI: 10.1063/1.4729535  0.814
2012 Thompson SJ, Emmert FL, Slipchenko LV. Effects of ethynyl substituents on the electronic structure of cyclobutadiene. The Journal of Physical Chemistry. A. 116: 3194-201. PMID 22375728 DOI: 10.1021/Jp2099202  0.795
2012 Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV. Fragmentation methods: a route to accurate calculations on large systems. Chemical Reviews. 112: 632-72. PMID 21866983 DOI: 10.1021/Cr200093J  0.78
2012 Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV. Accurate prediction of noncovalent interaction energies with the effective fragment potential method: Comparison of energy components to symmetry-adapted perturbation theory for the S22 test set Journal of Chemical Theory and Computation. 8: 2835-2843. DOI: 10.1021/ct200673a  0.553
2011 James WH, Buchanan EG, Müller CW, Dean JC, Kosenkov D, Slipchenko LV, Guo L, Reidenbach AG, Gellman SH, Zwier TS. Evolution of amide stacking in larger γ-peptides: triamide H-bonded cycles. The Journal of Physical Chemistry. A. 115: 13783-98. PMID 21978283 DOI: 10.1021/Jp205527E  0.336
2011 Smith QA, Gordon MS, Slipchenko LV. Effective fragment potential study of the interaction of DNA bases. The Journal of Physical Chemistry. A. 115: 11269-76. PMID 21877717 DOI: 10.1021/Jp2047954  0.793
2011 Haupert LM, Simpson GJ, Slipchenko LV. Computational investigation of amine-oxygen exciplex formation. The Journal of Physical Chemistry. A. 115: 10159-65. PMID 21812447 DOI: 10.1021/Jp205866A  0.368
2011 Smith QA, Gordon MS, Slipchenko LV. Benzene-pyridine interactions predicted by the effective fragment potential method. The Journal of Physical Chemistry. A. 115: 4598-609. PMID 21504175 DOI: 10.1021/Jp201039B  0.804
2011 Ghosh D, Isayev O, Slipchenko LV, Krylov AI. Effect of solvation on the vertical ionization energy of thymine: from microhydration to bulk. The Journal of Physical Chemistry. A. 115: 6028-38. PMID 21500795 DOI: 10.1021/Jp110438C  0.729
2011 Kosenkov D, Slipchenko LV. Solvent effects on the electronic transitions of p-nitroaniline: a QM/EFP study. The Journal of Physical Chemistry. A. 115: 392-401. PMID 21175204 DOI: 10.1021/Jp110026C  0.409
2011 Defusco A, Minezawa N, Slipchenko LV, Zahariev F, Gordon MS. Modeling solvent effects on electronic excited states Journal of Physical Chemistry Letters. 2: 2184-2192. DOI: 10.1021/Jz200947J  0.589
2010 Ghosh D, Kosenkov D, Vanovschi V, Williams CF, Herbert JM, Gordon MS, Schmidt MW, Slipchenko LV, Krylov AI. Noncovalent interactions in extended systems described by the effective fragment potential method: theory and application to nucleobase oligomers. The Journal of Physical Chemistry. A. 114: 12739-54. PMID 21067134 DOI: 10.1021/Jp107557P  0.806
2010 Arora P, Slipchenko LV, Webb SP, DeFusco A, Gordon MS. Solvent-induced frequency shifts: configuration interaction singles combined with the effective fragment potential method. The Journal of Physical Chemistry. A. 114: 6742-50. PMID 20527868 DOI: 10.1021/Jp101780R  0.754
2010 Slipchenko LV. Solvation of the excited states of chromophores in polarizable environment: orbital relaxation versus polarization. The Journal of Physical Chemistry. A. 114: 8824-30. PMID 20504011 DOI: 10.1021/Jp101797A  0.452
2010 Fedorov DG, Slipchenko LV, Kitaura K. Systematic study of the embedding potential description in the fragment molecular orbital method. The Journal of Physical Chemistry. A. 114: 8742-53. PMID 20441228 DOI: 10.1021/Jp101724P  0.355
2009 James WH, Müller CW, Buchanan EG, Nix MG, Guo L, Roskop L, Gordon MS, Slipchenko LV, Gellman SH, Zwier TS. Intramolecular amide stacking and its competition with hydrogen bonding in a small foldamer. Journal of the American Chemical Society. 131: 14243-5. PMID 19757786 DOI: 10.1021/Ja9054965  0.776
2009 Gordon MS, Mullin JM, Pruitt SR, Roskop LB, Slipchenko LV, Boatz JA. Accurate methods for large molecular systems. The Journal of Physical Chemistry. B. 113: 9646-63. PMID 19368406 DOI: 10.1021/Jp811519X  0.811
2009 Barnett NJ, Slipchenko LV, Gordon MS. The binding of Ag+ and Au+ to ethene. The Journal of Physical Chemistry. A. 113: 7474-81. PMID 19320464 DOI: 10.1021/Jp900372D  0.467
2009 Casanova D, Slipchenko LV, Krylov AI, Head-Gordon M. Double spin-flip approach within equation-of-motion coupled cluster and configuration interaction formalisms: Theory, implementation, and examples. The Journal of Chemical Physics. 130: 044103. PMID 19191373 DOI: 10.1063/1.3066652  0.716
2009 Slipchenko LV, Gordon MS. Water-benzene interactions: an effective fragment potential and correlated quantum chemistry study. The Journal of Physical Chemistry. A. 113: 2092-102. PMID 19072625 DOI: 10.1021/Jp808845B  0.498
2009 Slipchenko LV, Gordon MS. Damping functions in the effective fragment potential method Molecular Physics. 107: 999-1016. DOI: 10.1080/00268970802712449  0.543
2008 Smith T, Slipchenko LV, Gordon MS. Modeling pi-pi interactions with the effective fragment potential method: the benzene dimer and substituents. The Journal of Physical Chemistry. A. 112: 5286-94. PMID 18476681 DOI: 10.1021/Jp800107Z  0.575
2007 Slipchenko LV, Gordon MS. Electrostatic energy in the effective fragment potential method: theory and application to benzene dimer. Journal of Computational Chemistry. 28: 276-91. PMID 17143863 DOI: 10.1002/Jcc.20520  0.565
2007 Krylov AI, Slipchenko LV, Levchenko SV. Breaking the curse of the non-dynamical correlation problem: The spin - Flip method Acs Symposium Series. 958: 89-102.  0.721
2006 Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT, Slipchenko LV, Levchenko SV, O'Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJ, Besley NA, et al. Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics : Pccp. 8: 3172-91. PMID 16902710 DOI: 10.1039/B517914A  0.821
2006 Slipchenko LV, Krylov AI. Efficient strategies for accurate calculations of electronic excitation and ionization energies: theory and application to the dehydro-m-xylylene anion. The Journal of Physical Chemistry. A. 110: 291-8. PMID 16392867 DOI: 10.1021/Jp0542827  0.69
2005 Slipchenko LV, Krylov AI. Spin-conserving and spin-flipping equation-of-motion coupled-cluster method with triple excitations. The Journal of Chemical Physics. 123: 084107. PMID 16164282 DOI: 10.1063/1.2006091  0.646
2004 Munsch TE, Slipchenko LV, Krylov AI, Wenthold PG. Reactivity and structure of the 5-dehydro-m-xylylene anion. The Journal of Organic Chemistry. 69: 5735-41. PMID 15307747 DOI: 10.1021/Jo049555T  0.663
2004 Slipchenko LV, Munsch TE, Wenthold PG, Krylov AI. 5-Dehydro-1,3-quinodimethane: a hydrocarbon with an open-shell doublet ground state. Angewandte Chemie (International Ed. in English). 43: 742-5. PMID 14755709 DOI: 10.1002/Anie.200352990  0.668
2004 Slipchenko LV, Munsch TE, Wenthold PG, Krylov AI. Cover Picture: 5-Dehydro-1,3-quinodimethane: A Hydrocarbon with an Open-Shell Doublet Ground State (Angew. Chem. Int. Ed. 6/2004) Angewandte Chemie International Edition. 43: 647-647. DOI: 10.1002/Anie.200490009  0.623
2004 Slipchenko LV, Munsch TE, Wenthold PG, Krylov AI. Titelbild: 5-Dehydro-1,3-quinodimethane: A Hydrocarbon with an Open-Shell Doublet Ground State (Angew. Chem. 6/2004) Angewandte Chemie. 116: 663-663. DOI: 10.1002/Ange.200490009  0.62
2003 Slipchenko LV, Krylov AI. Electronic structure of the 1,3,5-tridehydrobenzene triradical in its ground and excited states Journal of Chemical Physics. 118: 9614-9622. DOI: 10.1063/1.1569845  0.681
2003 Slipchenko LV, Krylov AI. Electronic structure of the trimethylenemethane diradical in its ground and electronically excited states: Bonding, equilibrium geometries, and vibrational frequencies Journal of Chemical Physics. 118: 6874-6883. DOI: 10.1063/1.1561052  0.67
2002 Slipchenko LV, Krylov AI. Singlet-triplet gaps in diradicals by the spin-flip approach: A benchmark study Journal of Chemical Physics. 117: 4694-4708. DOI: 10.1063/1.1498819  0.639
Show low-probability matches.