Year |
Citation |
Score |
2019 |
Sellmann J, Rahinov I, Kluge S, Jünger H, Fomin A, Cheskis S, Schulz C, Wiggers H, Kempf A, Wlokas I. Detailed simulation of iron oxide nanoparticle forming flames: Buoyancy and probe effects Proceedings of the Combustion Institute. 37: 1241-1248. DOI: 10.1016/J.PROCI.2018.06.041 |
0.659 |
|
2018 |
Samu V, Varga T, Rahinov I, Cheskis S, Turányi T. Determination of rate parameters based on NH2 concentration profiles measured in ammonia-doped methane–air flames Fuel. 212: 679-683. DOI: 10.1016/J.Fuel.2017.10.019 |
0.694 |
|
2018 |
Fomin A, Sharabi Y, Pilipodi Best A, Tsionsky V, Rahinov I, Cheskis S. Concentration measurements by intracavity laser absorption spectroscopy for the case of strongly overlapped spectra Applied Physics B. 124. DOI: 10.1007/S00340-018-7034-6 |
0.719 |
|
2016 |
Fomin A, Zavlev T, Alekseev VA, Rahinov I, Cheskis S, Konnov AA. Experimental and modelling study of 1CH2 in premixed very rich methane flames Combustion and Flame. 171: 198-210. DOI: 10.1016/J.Combustflame.2016.06.020 |
0.71 |
|
2015 |
Poliak M, Fomin A, Tsionsky V, Cheskis S, Wlokas I, Rahinov I. On the mechanism of nanoparticle formation in a flame doped by iron pentacarbonyl. Physical Chemistry Chemical Physics : Pccp. 17: 680-5. PMID 25407507 DOI: 10.1039/C4Cp04454A |
0.716 |
|
2015 |
Rahinov I, Poliak M, Fomin A, Tsionsky V, Cheskis S. New Perspectives in Monitoring the Flame Synthesis of Iron Oxide Nanoparticles: Addressing Solid and Gas-Phase Diagnostics Challenges Mrs Proceedings. 1747. DOI: 10.1557/Opl.2015.337 |
0.713 |
|
2015 |
Kluge S, Deng L, Feroughi O, Schneider F, Poliak M, Fomin A, Tsionsky V, Cheskis S, Wlokas I, Rahinov I, Dreier T, Kempf A, Wiggers H, Schulz C. Initial reaction steps during flame synthesis of iron-oxide nanoparticles Crystengcomm. 17: 6930-6939. DOI: 10.1039/C5Ce00456J |
0.719 |
|
2015 |
Fomin A, Zavlev T, Alekseev VA, Konnov AA, Rahinov I, Cheskis S. Intracavity Laser Absorption Spectroscopy Study of HCO Radicals during Methane to Hydrogen Conversion in Very Rich Flames Energy & Fuels. 29: 6146-6154. DOI: 10.1021/Acs.Energyfuels.5B01497 |
0.763 |
|
2015 |
Fomin A, Zavlev T, Rahinov I, Cheskis S. A fiber laser intracavity absorption spectroscopy (FLICAS) sensor for simultaneous measurement of CO and CO2 concentrations and temperature Sensors and Actuators B: Chemical. 210: 431-438. DOI: 10.1016/J.Snb.2015.01.001 |
0.732 |
|
2015 |
Fomin A, Zavlev T, Tsionsky V, Rahinov I, Cheskis S. Pulsed Flame for Syngas Production via Partial Methane Oxidation Flow, Turbulence and Combustion. 96: 363-375. DOI: 10.1007/S10494-015-9660-Y |
0.728 |
|
2015 |
Fomin A, Zavlev T, Rahinov I, Alekseev VA, Konnov AA, Baev VM, Cheskis S. Fiber Laser Intracavity Spectroscopy of hot water for temperature and concentration measurements Applied Physics B. 121: 345-351. DOI: 10.1007/S00340-015-6236-4 |
0.703 |
|
2014 |
Fomin A, Poliak M, Tsionsky V, Cheskis S, Rahinov I. A method for nanoparticle characterization by laser induced detuning of quartz crystal microbalance (LID-QCM) Sensors and Actuators B: Chemical. 202: 861-865. DOI: 10.1016/J.Snb.2014.05.085 |
0.664 |
|
2014 |
Rahinov I, Fomin A, Poliak M, Cheskis S. Absorption electronic spectrum of gaseous FeO: in situ detection with intracavity laser absorption spectroscopy in a nanoparticle-generating flame reactor Applied Physics B. 117: 317-323. DOI: 10.1007/S00340-014-5838-6 |
0.751 |
|
2013 |
Fomin A, Poliak M, Rahinov I, Tsionsky V, Cheskis S. Combined particle mass spectrometer – Quartz crystal microbalance apparatus for in situ nanoparticle monitoring during flame assisted synthesis Combustion and Flame. 160: 2131-2140. DOI: 10.1016/J.Combustflame.2013.04.011 |
0.679 |
|
2011 |
Hevroni A, Golan H, Fialkov A, Rahinov I, Tsionsky V, Markovich G, Cheskis S. In situmeasurement of the mass concentration of flame-synthesized nanoparticles using quartz-crystal microbalance Measurement Science and Technology. 22: 115102. DOI: 10.1088/0957-0233/22/11/115102 |
0.717 |
|
2011 |
Löhden B, Kuznetsova S, Sengstock K, Baev VM, Goldman A, Cheskis S, Pálsdóttir B. Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments Applied Physics B. 102: 331-344. DOI: 10.1007/S00340-010-3995-9 |
0.579 |
|
2009 |
Cheskis S, Goldman A. Laser diagnostics of trace species in low-pressure flat flame Progress in Energy and Combustion Science. 35: 365-382. DOI: 10.1016/J.Pecs.2009.02.001 |
0.538 |
|
2008 |
Goldman A, Cheskis S. Intracavity laser absorption spectroscopy of sooting acetylene/air flames Applied Physics B. 92: 281-286. DOI: 10.1007/S00340-008-3084-5 |
0.575 |
|
2007 |
Rahinov I, Goldman A, Cheskis S. Intracavity Laser Absorption Spectroscopy for flame diagnostics Israel Journal of Chemistry. 47: 131-140. DOI: 10.1560/Ijc.47.2.131 |
0.748 |
|
2006 |
Goldman A, Rahinov I, Cheskis S, Löhden B, Wexler S, Sengstock K, Baev VM. Fiber laser intracavity absorption spectroscopy of ammonia and hydrogen cyanide in low pressure hydrocarbon flames Chemical Physics Letters. 423: 147-151. DOI: 10.1016/J.Cplett.2006.03.052 |
0.73 |
|
2006 |
Rahinov I, Goldman A, Cheskis S. Absorption spectroscopy diagnostics of amidogen in ammonia-doped methane/air flames Combustion and Flame. 145: 105-116. DOI: 10.1016/J.Combustflame.2005.11.004 |
0.765 |
|
2006 |
Goldman A, Rahinov I, Cheskis S. Molecular oxygen detection in low pressure flames using cavity ring-down spectroscopy Applied Physics B. 82: 659-663. DOI: 10.1007/S00340-005-2122-9 |
0.713 |
|
2005 |
Bohm T, Ditzian N, Peiter G, Volpp H, Cheskis S, Wolfrum J. Absolute radical concentration measurements in low-pressure H2/O2 flames during the combustion of graphite Proceedings of the Combustion Institute. 30: 2131-2139. DOI: 10.1016/J.PROCI.2004.08.002 |
0.314 |
|
2005 |
Rahinov I, Ditzian N, Goldman A, Cheskis S. Intracavity laser absorption spectroscopy of NH2 in methane/air flames doped with N2O, NO, and NH3 Proceedings of the Combustion Institute. 30: 1575-1582. DOI: 10.1016/J.PROCI.2004.07.027 |
0.745 |
|
2005 |
Rahinov I, Goldman A, Cheskis S. Intracavity laser absorption spectroscopy and cavity ring-down spectroscopy in low-pressure flames Applied Physics B. 81: 143-149. DOI: 10.1007/S00340-005-1870-X |
0.763 |
|
2003 |
Rahinov I, Ditzian N, Goldman A, Cheskis S. NH2 radical formation by ammonia pyrolysis in a temperature range of 800?1000�K Applied Physics B: Lasers and Optics. 77: 541-546. DOI: 10.1007/S00340-003-1267-7 |
0.721 |
|
2002 |
Rahinov I, Ditzian N, Lozovsky V, Cheskis S. Intracavity laser absorption spectroscopy measurements of CN using red system A–X. Simultaneous observation of CN, NH2, HNO and in low pressure hydrocarbon flames doped with nitrogen oxides Chemical Physics Letters. 352: 169-175. DOI: 10.1016/S0009-2614(01)01455-5 |
0.756 |
|
2001 |
Lozovsky VA, Rahinov I, Ditzian N, Cheskis S. Laser absorption spectroscopy diagnostics of nitrogen-containing radicals in low-pressure hydrocarbon flames doped with nitrogen oxides. Faraday Discussions. 321-35; discussion 3. PMID 11877999 DOI: 10.1039/B101981N |
0.774 |
|
2000 |
Derzy I, Lozovsky V, Ditzian N, Rahinov I, Cheskis S. Absorption spectroscopy measurements of NH and NH2 absolute concentrations in methane/air flames doped with N2O Proceedings of the Combustion Institute. 28: 1741-1748. DOI: 10.1016/S0082-0784(00)80575-5 |
0.729 |
|
2000 |
Lozovsky V, Cheskis S. Intracavity laser absorption spectroscopy study of HNO in hydrocarbon flames doped with N2O Chemical Physics Letters. 332: 508-514. DOI: 10.1016/S0009-2614(00)01288-4 |
0.552 |
|
1999 |
Cheskis S. Quantitative measurements of absolute concentrations of intermediate species in flames Progress in Energy and Combustion Science. 25: 233-252. DOI: 10.1016/S0360-1285(98)00022-7 |
0.544 |
|
1999 |
Derzy I, Lozovsky VA, Cheskis S. Absorption cross-sections and absolute concentration of singlet methylene in methane/air flames Chemical Physics Letters. 313: 121-128. DOI: 10.1016/S0009-2614(99)01045-3 |
0.474 |
|
1999 |
Derzy I, Lozovsky VA, Cheskis S. Absolute CH concentration in flames measured by cavity ring-down spectroscopy Chemical Physics Letters. 306: 319-324. DOI: 10.1016/S0009-2614(99)00462-5 |
0.508 |
|
1999 |
Derzy I, Lozovsky VA, Cheskis S. CH, NH, and NH2Concentration Profiles in Methane/Air Flames Doped with N2O Israel Journal of Chemistry. 39: 49-54. DOI: 10.1002/Ijch.199900005 |
0.545 |
|
1998 |
Lozovsky VA, Derzy I, Cheskis S. Radical concentration profiles in a low-pressure methane-air flame measured by intracavity laser absorption and cavity ring-down spectroscopy Symposium (International) On Combustion. 27: 445-452. DOI: 10.1016/S0082-0784(98)80433-5 |
0.465 |
|
1998 |
Lozovsky V, Derzy I, Cheskis S. Nonequilibrium concentrations of the vibrationally excited OH radical in a methane flame measured by cavity ring-down spectroscopy Chemical Physics Letters. 284: 407-411. DOI: 10.1016/S0009-2614(97)01443-7 |
0.428 |
|
1998 |
Cheskis S, Derzy I, Lozovsky VA, Kachanov A, Romanini D. Cavity ring-down spectroscopy of OH radicals in low pressure flame Applied Physics B. 66: 377-381. DOI: 10.1007/S003400050404 |
0.445 |
|
1997 |
Lozovsky VA, Cheskis S, Kachanov A, Stoeckel F. Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy The Journal of Chemical Physics. 106: 8384-8391. DOI: 10.1063/1.473900 |
0.535 |
|
1997 |
Cheskis S, Derzy I, Lozovsky V, Kachanov A, Stoeckel F. Intracavity laser absorption spectroscopy detection of singlet CH2 radicals in hydrocarbon flames Chemical Physics Letters. 277: 423-429. DOI: 10.1016/S0009-2614(97)00947-0 |
0.529 |
|
1997 |
Cheskis S, Kachanov A, Chenevier M, Stoeckel F. Temperature measurements in flames using water molecule overtone . spectra detected by intracavity laser absorption spectroscopy Applied Physics B: Lasers and Optics. 64: 713-716. DOI: 10.1007/S003400050238 |
0.477 |
|
1995 |
CHESKIS S, DERZY I, IOGANSEN AA, KALONTAROV L. Laser Induced Fluorescence in a Pulsed Propagated Flame—A New Technique for Combustion Studies Combustion Science and Technology. 104: 441-447. DOI: 10.1080/00102209508907732 |
0.514 |
|
1995 |
Cheskis S. Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames The Journal of Chemical Physics. 102: 1851-1854. DOI: 10.1063/1.468713 |
0.413 |
|
1995 |
Kalontarov L, Jing H, Amirav A, Cheskis S. Mechanism of sulfur emission quenching in flame photometric detectors Journal of Chromatography A. 696: 245-256. DOI: 10.1016/0021-9673(94)01273-H |
0.414 |
|
1995 |
Cheskis S. Mechanism of sulfur chemiluminescent emission in pulsed flames Combustion and Flame. 100: 550-558. DOI: 10.1016/0010-2180(94)00148-L |
0.445 |
|
1994 |
Cheskis S, Kovalenko SA. Detection of atomic oxygen in flames by absorption spectroscopy Applied Physics B Lasers and Optics. 59: 543-546. DOI: 10.1007/Bf01082398 |
0.496 |
|
1993 |
Cheskis S, Atar E, Amirav A. Pulsed-flame photometer: a novel gas chromatography detector Analytical Chemistry. 65: 539-555. DOI: 10.1021/Ac00053A010 |
0.417 |
|
1993 |
Iogansen A, Sarkisov O, Zimont E, Seetula J, Timonen R, Cheskis S. Formation of vibrationally excited OH radicals in the O (1D) + H2S reaction Chemical Physics Letters. 212: 604-610. DOI: 10.1016/0009-2614(93)85492-7 |
0.332 |
|
1991 |
Atar E, Cheskis S, Amirav A. Pulsed flame - a novel concept for molecular detection Analytical Chemistry. 63: 2061-2064. DOI: 10.1021/Ac00018A031 |
0.37 |
|
1988 |
Cheskis S, Iogansen A, Kulakov P, Sarkisov O, Titov A. Laser photolysis of ozone in the presence of ammonia: Vibrationally excited OH radicals Chemical Physics Letters. 143: 348-352. DOI: 10.1016/0009-2614(88)87045-3 |
0.305 |
|
1985 |
Cheskis S, Iogansen A, Sarkisov O, Titov A. Laser photolysis of ozone in the presence of ammonia. Formation and decay of vibrationally excited NH2 radicals Chemical Physics Letters. 120: 45-49. DOI: 10.1016/0009-2614(85)87010-X |
0.3 |
|
Show low-probability matches. |