Year |
Citation |
Score |
2023 |
Spackman PR, Spackman MA, Gale JD. A transferable quantum mechanical energy model for intermolecular interactions using a single empirical parameter. Iucrj. 10: 754-765. PMID 37903099 DOI: 10.1107/S2052252523008941 |
0.522 |
|
2023 |
Spackman PR, Walisinghe AJ, Anderson MW, Gale JD. CrystalClear: an open, modular protocol for predicting molecular crystal growth from solution. Chemical Science. 14: 7192-7207. PMID 37416706 DOI: 10.1039/d2sc06761g |
0.484 |
|
2021 |
Gale JD, LeBlanc LM, Spackman PR, Silvestri A, Raiteri P. A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination. Journal of Chemical Theory and Computation. PMID 34735764 DOI: 10.1021/acs.jctc.1c00832 |
0.554 |
|
2021 |
Karton A, Spackman PR. Evaluation of density functional theory for a large and diverse set of organic and inorganic equilibrium structures. Journal of Computational Chemistry. PMID 34121198 DOI: 10.1002/jcc.26698 |
0.526 |
|
2020 |
Cui P, Svensson Grape E, Spackman PR, Wu Y, Clowes R, Day GM, Inge AK, Little MA, Cooper AI. An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society. PMID 32597187 DOI: 10.1021/Jacs.0C04885 |
0.322 |
|
2019 |
Cui P, McMahon DP, Spackman PR, Alston BM, Little MA, Day GM, Cooper AI. Mining predicted crystal structure landscapes with high throughput crystallisation: old molecules, new insights. Chemical Science. 10: 9988-9997. PMID 32055355 DOI: 10.1039/C9Sc02832C |
0.307 |
|
2019 |
Spackman PR, Yu LJ, Morton CJ, Parker MW, Bond CS, Spackman MA, Jayatilaka D, Thomas SP. Bridging crystal engineering and drug discovery by utilizing intermolecular interactions and molecular shapes in crystals. Angewandte Chemie (International Ed. in English). PMID 31385643 DOI: 10.1002/Anie.201906602 |
0.555 |
|
2018 |
Burger V, Claeyssens F, Davies DW, Day GM, Dyer MS, Hare A, Li Y, Mellot-Draznieks C, Mitchell JBO, Mohamed S, Oganov AR, Price SL, Ruggiero M, Ryder MR, Sastre G, ... ... Spackman P, et al. Applications of crystal structure prediction - inorganic and network structures: general discussion. Faraday Discussions. PMID 30298165 DOI: 10.1039/C8Fd90034E |
0.336 |
|
2018 |
Thomas SP, Spackman PR, Jayatilaka D, Spackman MA. Accurate Lattice Energies for Molecular Crystals from Experimental Crystal Structures. Journal of Chemical Theory and Computation. PMID 29406748 DOI: 10.1021/acs.jctc.7b01200 |
0.336 |
|
2018 |
Spackman P, Day G. Applying fast, accurate lattice energies for molecular crystal structure prediction using CrystalExplorer model energies Acta Crystallographica Section A. 74. DOI: 10.1107/S205327331808974X |
0.384 |
|
2017 |
Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. Iucrj. 4: 575-587. PMID 28932404 DOI: 10.1107/S205225251700848X |
0.316 |
|
2017 |
Edwards AJ, Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA. Intermolecular interactions in molecular crystals: what's in a name? Faraday Discussions. PMID 28721418 DOI: 10.1039/c7fd00072c |
0.313 |
|
2017 |
Spackman PR, Bohman B, Karton A, Jayatilaka D. Quantum chemical electron impact mass spectrum prediction for de novo structure elucidation: Assessment against experimental reference data and comparison to competitive fragmentation modeling International Journal of Quantum Chemistry. 118: e25460. DOI: 10.1002/qua.25460 |
0.464 |
|
2016 |
Spackman PR, Jayatilaka D, Karton A. Basis set convergence of CCSD(T) equilibrium geometries using a large and diverse set of molecular structures. The Journal of Chemical Physics. 145: 104101. PMID 27634245 DOI: 10.1063/1.4962168 |
0.518 |
|
2016 |
Spackman PR, Thomas SP, Jayatilaka D. High Throughput Profiling of Molecular Shapes in Crystals. Scientific Reports. 6: 22204. PMID 26908351 DOI: 10.1038/srep22204 |
0.352 |
|
2015 |
Spackman PR, Karton A. Estimating the CCSD basis-set limit energy from small basis sets: Basis-set extrapolations vs additivity schemes Aip Advances. 5. DOI: 10.1063/1.4921697 |
0.5 |
|
Show low-probability matches. |