Year |
Citation |
Score |
2022 |
Stan G, Lorimer GH, Thirumalai D. Friends in need: How chaperonins recognize and remodel proteins that require folding assistance. Frontiers in Molecular Biosciences. 9: 1071168. PMID 36479385 DOI: 10.3389/fmolb.2022.1071168 |
0.364 |
|
2019 |
Thirumalai D, Lorimer GH, Hyeon C. Iterative Annealing Mechanism Explains the Functions of the GroEL and RNA Chaperones. Protein Science : a Publication of the Protein Society. PMID 31800116 DOI: 10.1002/Pro.3795 |
0.485 |
|
2019 |
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chemical Reviews. PMID 31017391 DOI: 10.1021/Acs.Chemrev.8B00760 |
0.378 |
|
2018 |
Lorimer GH, Fei X, Ye X. The GroEL chaperonin: a protein machine with pistons driven by ATP binding and hydrolysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 373. PMID 29735733 DOI: 10.1098/rstb.2017.0179 |
0.768 |
|
2017 |
Roh SH, Hryc CF, Jeong HH, Fei X, Jakana J, Lorimer GH, Chiu W. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Proceedings of the National Academy of Sciences of the United States of America. PMID 28710336 DOI: 10.1073/Pnas.1704725114 |
0.729 |
|
2014 |
Fei X, Ye X, LaRonde NA, Lorimer GH. Formation and structures of GroEL:GroES2 chaperonin footballs, the protein-folding functional form Proceedings of the National Academy of Sciences of the United States of America. 111: 12775-12780. PMID 25136110 DOI: 10.1073/Pnas.1412922111 |
0.796 |
|
2013 |
Yang D, Ye X, Lorimer GH. Symmetric GroEL: GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine Proceedings of the National Academy of Sciences of the United States of America. 110: E4298-E4305. PMID 24167279 DOI: 10.1073/Pnas.1318862110 |
0.346 |
|
2013 |
Ye X, Lorimer GH. Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange Proceedings of the National Academy of Sciences of the United States of America. 110: E4289-E4297. PMID 24167257 DOI: 10.1073/pnas.1317702110 |
0.384 |
|
2013 |
Fei X, Yang D, LaRonde-LeBlanc N, Lorimer GH. Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution Proceedings of the National Academy of Sciences of the United States of America. 110: E2958-E2966. PMID 23861496 DOI: 10.1073/Pnas.1311996110 |
0.805 |
|
2013 |
Corsepius NC, Lorimer GH. Measuring how much work the chaperone GroEL can do Proceedings of the National Academy of Sciences of the United States of America. 110: E2451-E2459. PMID 23723348 DOI: 10.1073/Pnas.1307837110 |
0.785 |
|
2009 |
Kiser PD, Lorimer GH, Palczewski K. Use of thallium to identify monovalent cation binding sites in GroEL. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications. 65: 967-71. PMID 19851000 DOI: 10.1107/S1744309109032928 |
0.315 |
|
2008 |
Grason JP, Gresham JS, Widjaja L, Wehri SC, Lorimer GH. Setting the chaperonin timer: The effects of K+ and substrate protein on ATP hydrolysis Proceedings of the National Academy of Sciences of the United States of America. 105: 17334-17338. PMID 18988745 DOI: 10.1073/Pnas.0807429105 |
0.595 |
|
2008 |
Grason JP, Gresham JS, Lorimer GH. Setting the chaperonin timer: a two-stroke, two-speed, protein machine. Proceedings of the National Academy of Sciences of the United States of America. 105: 17339-44. PMID 18988739 DOI: 10.1073/Pnas.0807418105 |
0.678 |
|
2007 |
Stan G, Lorimer GH, Thirumalai D, Brooks BR. Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein Proceedings of the National Academy of Sciences of the United States of America. 104: 8803-8808. PMID 17496143 DOI: 10.1073/Pnas.0700607104 |
0.446 |
|
2007 |
Bonshtien AL, Weiss C, Vitlin A, Niv A, Lorimer GH, Azem A. Significance of the N-terminal domain for the function of chloroplast cpn20 chaperonin Journal of Biological Chemistry. 282: 4463-4469. PMID 17178727 DOI: 10.1074/Jbc.M606433200 |
0.317 |
|
2006 |
Hyeon C, Lorimer GH, Thirumalai D. Dynamics of allosteric transitions in GroEL Proceedings of the National Academy of Sciences of the United States of America. 103: 18939-18944. PMID 17135353 DOI: 10.1073/Pnas.0608759103 |
0.384 |
|
2006 |
Stan G, Brooks BR, Lorimer GH, Thirumalai D. Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state Proceedings of the National Academy of Sciences of the United States of America. 103: 4433-4438. PMID 16537402 DOI: 10.1073/Pnas.0600433103 |
0.465 |
|
2003 |
Thirumalai D, Klimov DK, Lorimer GH. Caging helps proteins fold Proceedings of the National Academy of Sciences of the United States of America. 100: 11195-11197. PMID 14506295 DOI: 10.1073/Pnas.2035072100 |
0.471 |
|
2001 |
Thirumalai D, Lorimer GH. Chaperonin-mediated protein folding Annual Review of Biophysics and Biomolecular Structure. 30: 245-269. PMID 11340060 DOI: 10.1146/annurev.biophys.30.1.245 |
0.337 |
|
1999 |
Shtilerman M, Lorimer GH, Englander SW. Chaperonin function: Folding by forced unfolding Science. 284: 822-825. PMID 10221918 DOI: 10.1126/Science.284.5415.822 |
0.309 |
|
1999 |
Horowitz PM, Lorimer GH, Ybarra J. GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism Proceedings of the National Academy of Sciences of the United States of America. 96: 2682-2686. PMID 10077571 DOI: 10.1073/Pnas.96.6.2682 |
0.327 |
|
1999 |
Rendina AR, Taylor WS, Gibson K, Lorimer G, Rayner D, Lockett B, Kranis K, Wexler B, Marcovici-Mizrahi D, Nudelman A, Marsilii E, Chi H, Wawrzak Z, Calabrese J, Huang W, et al. The design and synthesis of inhibitors of dethiobiotin synthetase as potential herbicides Pesticide Science. 55: 236-247. DOI: 10.1002/(Sici)1096-9063(199903)55:3<236::Aid-Ps888>3.0.Co;2-0 |
0.318 |
|
1998 |
Viitanen PV, Lorimer G, Bergmeier W, Weiss C, Kessel M, Goloubinoff P. Purification of mammalian mitochondrial chaperonin 60 through in vitro reconstitution of active oligomers. Methods in Enzymology. 290: 203-217. PMID 9534164 DOI: 10.1016/S0076-6879(98)90020-9 |
0.309 |
|
1998 |
Todd MJ, Lorimer GH. Criteria for assessing the purity and quality of GroEL Methods in Enzymology. 290: 135-141. PMID 9534156 DOI: 10.1016/S0076-6879(98)90012-X |
0.392 |
|
1997 |
Lorimer G. Protein folding. Folding with a two-stroke motor. Nature. 388: 720-1, 723. PMID 9285577 DOI: 10.1038/41892 |
0.403 |
|
1996 |
Walter S, Lorimer GH, Schmid FX. A thermodynamic coupling mechanism for GroEL-mediated unfolding Proceedings of the National Academy of Sciences of the United States of America. 93: 9425-9430. PMID 8790346 DOI: 10.1073/Pnas.93.18.9425 |
0.434 |
|
1996 |
Todd MJ, Lorimer GH, Thirumalai D. Chaperonin-facilitated protein folding: Optimization of rate and yield by an iterative annealing mechanism Proceedings of the National Academy of Sciences of the United States of America. 93: 4030-4035. PMID 8633011 DOI: 10.1073/Pnas.93.9.4030 |
0.451 |
|
1996 |
Lorimer GH. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo Faseb Journal. 10: 5-9. PMID 8566548 DOI: 10.1096/Fasebj.10.1.8566548 |
0.359 |
|
1995 |
Todd MJ, Lorimer GH. Stability of the asymmetric Escherichia coli chaperonin complex. Guanidine chloride causes rapid dissociation Journal of Biological Chemistry. 270: 5388-5394. PMID 7890652 DOI: 10.1074/Jbc.270.10.5388 |
0.45 |
|
1995 |
Todd MJ, Boudkin O, Freire E, Lorimer GH. GroES and the chaperonin-assisted protein folding cycle: GroES has no affinity for nucleotides Febs Letters. 359: 123-125. PMID 7867782 DOI: 10.1016/0014-5793(95)00021-Z |
0.307 |
|
1995 |
Girshovich AS, Bochkareva ES, Todd MJ, Lorimer GH. On the distribution of ligands within the asymmetric chaperonin complex, GroEL14 · ADP7 · GroES7 Febs Letters. 366: 17-20. PMID 7789507 DOI: 10.1016/0014-5793(95)00479-S |
0.348 |
|
1995 |
Viitanen PV, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer GH, Gatenby A, Soll J. Functional characterization of the higher plant chloroplast chaperonins Journal of Biological Chemistry. 270: 18158-18164. PMID 7629128 DOI: 10.1074/Jbc.270.30.18158 |
0.32 |
|
1995 |
Todd MJ, Walke S, Lorimer G, Truscott K, Scopes RK. The single-ring Thermoanaerobacter brockii chaperonin 60 (Tbr-EL7) dimerizes to Tbr-EL14.Tbr-ES7 under protein folding conditions. Biochemistry. 34: 14932-14941. PMID 7578105 DOI: 10.1021/Bi00045A038 |
0.47 |
|
1994 |
Todd MJ, Viitanen PV, Lorimer GH. Dynamics of the chaperonin ATPase cycle: Implications for facilitated protein folding Science. 265: 659-666. PMID 7913555 DOI: 10.1126/Science.7913555 |
0.557 |
|
1994 |
Schmidt M, Rutkat K, Rachel R, Pfeifer G, Jaenicke R, Viitanen P, Lorimer G, Buchner J. Symmetric complexes of GroE chaperonins as part of the functional cycle. Science (New York, N.Y.). 265: 656-9. PMID 7913554 DOI: 10.1126/Science.7913554 |
0.42 |
|
1994 |
Schmidt M, Buchner J, Todd MJ, Lorimer GH, Viitanen PV. On the role of groES in the chaperonin-assisted folding reaction: Three case studies Journal of Biological Chemistry. 269: 10304-10311. PMID 7908292 |
0.341 |
|
1993 |
Erijman L, Lorimer GH, Weber G. Reversible dissociation and conformational stability of dimeric ribulose bisphosphate carboxylase Biochemistry. 32: 5187-5195. PMID 8388254 DOI: 10.1021/Bi00070A030 |
0.331 |
|
1993 |
Lorimer GH, Chen YR, Hartman FC. A role for the ε-amino group of lysine-334 of ribulose-l,5-bisphosphate carboxylase in the addition of carbon dioxide to the 2,3-enediol(ate) of ribulose 1,5-bisphosphate Biochemistry. 32: 9018-9024. PMID 8369274 DOI: 10.1021/Bi00086A006 |
0.389 |
|
1993 |
Lorimer GH. Hydrolysis of adenosine 5′-triphosphate by Escherichia coli GroEL: Effects of GroES and potassium ion Biochemistry. 32: 8560-8567. PMID 8102879 DOI: 10.1021/Bi00084A024 |
0.47 |
|
1993 |
Lorimer GH, Todd MJ, Viitanen PV. Chaperonins and protein folding: unity and disunity of mechanisms. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 339: 297-303; discussion . PMID 8098534 DOI: 10.1098/Rstb.1993.0028 |
0.403 |
|
1993 |
Rospert S, Glick BS, Jenö P, Schatz G, Todd MJ, Lorimer GH, Viitanen PV. Identification and functional analysis of chaperonin 10, the groES homolog from yeast mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 90: 10967-71. PMID 7902576 DOI: 10.1073/Pnas.90.23.10967 |
0.327 |
|
1992 |
Viitanen PV, Gatenby AA, Lorimer GH. Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins Protein Science. 1: 363-369. PMID 1363913 DOI: 10.1002/Pro.5560010308 |
0.446 |
|
1992 |
Van Der Vies SM, Viitanen PV, Gatenby AA, Lorimer GH, Jaenicke R. Conformational states of ribulosebisphosphate carboxylase and their interaction with chaperonin 60 Biochemistry®. 31: 3635-3644. PMID 1348956 DOI: 10.1021/Bi00129A012 |
0.404 |
|
1992 |
Viitanen PV, Lorimer GH, Seetharam R, Gupta RS, Oppenheim J, Thomas JO, Cowan NJ. Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. The Journal of Biological Chemistry. 267: 695-8. PMID 1346131 |
0.328 |
|
1991 |
Ranty B, Lorimer G, Gutteridge S. An intra-dimeric crosslink of large subunits of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase is formed by oxidation of cysteine 247. Febs Journal. 200: 353-358. PMID 1889404 DOI: 10.1111/J.1432-1033.1991.Tb16192.X |
0.358 |
|
1991 |
Viitanen PV, Donaldson GK, Lorimer GH, Lubben TH, Gatenby AA. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry. 30: 9716-23. PMID 1680394 DOI: 10.1021/Bi00104A021 |
0.45 |
|
1990 |
Lubben TH, Gatenby AA, Donaldson GK, Lorimer GH, Viitanen PV. Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. Proceedings of the National Academy of Sciences of the United States of America. 87: 7683-7. PMID 1977163 DOI: 10.1073/Pnas.87.19.7683 |
0.337 |
|
1990 |
Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O'Keefe DP, Lorimer GH. Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry. 29: 5665-71. PMID 1974461 DOI: 10.1021/Bi00476A003 |
0.446 |
|
1990 |
Gatenby AA, Viitanen PV, Lorimer GH. Chaperonin assisted polypeptide folding and assembly: implications for the production of functional proteins in bacteria Trends in Biotechnology. 8: 354-358. PMID 1369447 DOI: 10.1016/0167-7799(90)90224-L |
0.35 |
|
1989 |
Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP Nature. 342: 884-889. PMID 10532860 DOI: 10.1038/342884A0 |
0.425 |
|
1987 |
Berry JA, Lorimer GH, Pierce J, Seemann JR, Meek J, Freas S. Isolation, identification, and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulose-bisphosphate carboxylase activity. Proceedings of the National Academy of Sciences of the United States of America. 84: 734-8. PMID 16593807 DOI: 10.1073/Pnas.84.3.734 |
0.305 |
|
1986 |
Lorimer GH, Andrews TJ, Pierce J, Schloss JV. 2 $'$ -Carboxy-3-Keto-D-Arabinitol 1,5-Bisphosphate, the Six-Carbon Intermediate of the Ribulose Bisphosphate Carboxylase Reaction Philosophical Transactions of the Royal Society B. 313: 397-407. DOI: 10.1098/Rstb.1986.0046 |
0.335 |
|
1986 |
Schneider G, Lindqvist Y, Brändén C, Lorimer G. Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum
at 2.9 Å resolution The Embo Journal. 5: 3409-3415. DOI: 10.1002/J.1460-2075.1986.Tb04662.X |
0.309 |
|
1984 |
Gutteridge S, Sigal I, Thomas B, Arentzen R, Cordova A, Lorimer G. A site-specific mutation within the active site of ribulose-1,5-bisphosphate carboxylase of Rhodospirillum rubrum. The Embo Journal. 3: 2737-2743. DOI: 10.1002/J.1460-2075.1984.Tb02204.X |
0.304 |
|
1981 |
Badger MR, Lorimer GH. Interaction of sugar phosphates with the catalytic site of ribulose-1,5-bisphosphate carboxylase Biochemistry. 20: 2219-2225. PMID 7236594 DOI: 10.1021/Bi00511A023 |
0.332 |
|
1975 |
Gerster R, Lorimer GH, Vennesland B. The extra O2 evolved during nitrate utilization by chlorella Plant Science Letters. 5: 255-260. DOI: 10.1016/0304-4211(75)90020-6 |
0.529 |
|
1975 |
Lorimer GH, Andrews TJ, Tolbert NE. [72] d-Ribulose-1,5-diphosphate oxygenase Methods in Enzymology. 42: 484-487. DOI: 10.1016/0076-6879(75)42155-3 |
0.42 |
|
1974 |
Gewitz HS, Lorimer GH, Solomonson LP, Vennesland B. Presence of HCN in chlorella vulgaris and its possible role in controlling the reduction of nitrate. Nature. 249: 79-81. PMID 4364357 DOI: 10.1038/249079A0 |
0.567 |
|
1973 |
Lorimer GH, Andrews TJ, Tolbert NE. Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action Biochemistry. 12: 18-23. PMID 4683482 |
0.456 |
|
1973 |
Andrews TJ, Lorimer GH, Tolbert NE. Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction-1 protein of leaves Biochemistry. 12: 11-18. PMID 4683476 |
0.514 |
|
1971 |
Andrews TJ, Lorimer GH, Tolbert NE. Incorporation of molecular oxygen into glycine and serine during photorespiration in spinach leaves Biochemistry. 10: 4777-4782. PMID 5140193 |
0.442 |
|
Show low-probability matches. |