Martin C. Schmidt - Publications

Affiliations: 
Microbiology & Molecular Genetics University of Pittsburgh, Pittsburgh, PA, United States 

34 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 O'Donnell AF, Schmidt MC. AMPK-Mediated Regulation of Alpha-Arrestins and Protein Trafficking. International Journal of Molecular Sciences. 20. PMID 30691068 DOI: 10.3390/Ijms20030515  0.379
2019 Offley SR, Schmidt MC. Protein phosphatases of Saccharomyces cerevisiae. Current Genetics. 65: 41-55. PMID 30225534 DOI: 10.1007/S00294-018-0884-Y  0.454
2016 Chandrashekarappa DG, McCartney RR, O'Donnell AF, Schmidt MC. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress. Cellular Signalling. 28: 1881-1893. PMID 27592031 DOI: 10.1016/J.Cellsig.2016.08.016  0.49
2016 McCartney RR, Garnar-Wortzel L, Chandrashekarappa DG, Schmidt MC. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. Biochimica Et Biophysica Acta. PMID 27524664 DOI: 10.1016/J.Bbapap.2016.08.007  0.517
2015 O'Donnell AF, McCartney RR, Chandrashekarappa DG, Zhang BB, Thorner J, Schmidt MC. 2-Deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3. Molecular and Cellular Biology. 35: 939-55. PMID 25547292 DOI: 10.1128/Mcb.01183-14  0.409
2014 McCartney RR, Chandrashekarappa DG, Zhang BB, Schmidt MC. Genetic analysis of resistance and sensitivity to 2-deoxyglucose in Saccharomyces cerevisiae. Genetics. 198: 635-46. PMID 25116136 DOI: 10.1534/Genetics.114.169060  0.432
2013 Schmidt MC. Signaling crosstalk: integrating nutrient availability and sex. Science Signaling. 6: pe28. PMID 24003253 DOI: 10.1126/Scisignal.2004589  0.46
2013 Chandrashekarappa DG, McCartney RR, Schmidt MC. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. The Journal of Biological Chemistry. 288: 89-98. PMID 23184934 DOI: 10.1074/Jbc.M112.422659  0.515
2011 Chandrashekarappa DG, McCartney RR, Schmidt MC. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation. The Journal of Biological Chemistry. 286: 44532-41. PMID 22065577 DOI: 10.1074/Jbc.M111.315895  0.469
2011 Mayer FV, Heath R, Underwood E, Sanders MJ, Carmena D, McCartney RR, Leiper FC, Xiao B, Jing C, Walker PA, Haire LF, Ogrodowicz R, Martin SR, Schmidt MC, Gamblin SJ, et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metabolism. 14: 707-14. PMID 22019086 DOI: 10.1016/J.Cmet.2011.09.009  0.524
2011 Zhang Y, McCartney RR, Chandrashekarappa DG, Mangat S, Schmidt MC. Reg1 protein regulates phosphorylation of all three Snf1 isoforms but preferentially associates with the Gal83 isoform. Eukaryotic Cell. 10: 1628-36. PMID 22002657 DOI: 10.1128/Ec.05176-11  0.416
2010 Rubenstein EM, Schmidt MC. The glucose signal and metabolic p[H+]lux. The Embo Journal. 29: 2473-4. PMID 20683466 DOI: 10.1038/Emboj.2010.161  0.585
2010 Tabba S, Mangat S, McCartney R, Schmidt MC. PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase. Cellular Signalling. 22: 1013-21. PMID 20170726 DOI: 10.1016/J.Cellsig.2010.02.003  0.481
2010 Mangat S, Chandrashekarappa D, McCartney RR, Elbing K, Schmidt MC. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex. Eukaryotic Cell. 9: 173-83. PMID 19897735 DOI: 10.1128/Ec.00267-09  0.53
2008 Shirra MK, McCartney RR, Zhang C, Shokat KM, Schmidt MC, Arndt KM. A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. The Journal of Biological Chemistry. 283: 35889-98. PMID 18955495 DOI: 10.1074/Jbc.M805325200  0.453
2008 Rubenstein EM, McCartney RR, Zhang C, Shokat KM, Shirra MK, Arndt KM, Schmidt MC. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. The Journal of Biological Chemistry. 283: 222-30. PMID 17991748 DOI: 10.1074/Jbc.M707957200  0.676
2007 Rubenstein EM, Schmidt MC. Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. Eukaryotic Cell. 6: 571-83. PMID 17337635 DOI: 10.1128/Ec.00026-07  0.669
2006 Buerke M, Schwertz H, Längin T, Buerke U, Prondzinsky R, Platsch H, Richert J, Bomm S, Schmidt M, Hillen H, Lindemann S, Blaschke G, Müller-Werdan U, Werdan K. Proteome analysis of myocardial tissue following ischemia and reperfusion--effects of complement inhibition. Biochimica Et Biophysica Acta. 1764: 1536-45. PMID 17045855 DOI: 10.1016/J.Bbapap.2006.03.008  0.312
2006 Elbing K, Rubenstein EM, McCartney RR, Schmidt MC. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity. The Journal of Biological Chemistry. 281: 26170-80. PMID 16847059 DOI: 10.1074/Jbc.M603811200  0.677
2006 Rubenstein EM, McCartney RR, Schmidt MC. Regulatory domains of Snf1-activating kinases determine pathway specificity. Eukaryotic Cell. 5: 620-7. PMID 16607009 DOI: 10.1128/Ec.5.4.620-627.2006  0.665
2006 Elbing K, McCartney RR, Schmidt MC. Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The Biochemical Journal. 393: 797-805. PMID 16201971 DOI: 10.1042/Bj20051213  0.53
2005 Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah AS, et al. Global analysis of protein phosphorylation in yeast. Nature. 438: 679-84. PMID 16319894 DOI: 10.1038/Nature04187  0.417
2005 McCartney RR, Rubenstein EM, Schmidt MC. Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Current Genetics. 47: 335-44. PMID 15824893 DOI: 10.1007/S00294-005-0576-2  0.674
2003 Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC, Hardie DG. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Current Biology : Cb. 13: 1299-305. PMID 12906789 DOI: 10.1016/S0960-9822(03)00459-7  0.545
2003 Nath N, McCartney RR, Schmidt MC. Yeast Pak1 kinase associates with and activates Snf1. Molecular and Cellular Biology. 23: 3909-17. PMID 12748292 DOI: 10.1128/Mcb.23.11.3909-3917.2003  0.545
2003 Leech A, Nath N, McCartney RR, Schmidt MC. Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Eukaryotic Cell. 2: 265-73. PMID 12684376  0.422
2002 Nath N, McCartney RR, Schmidt MC. Purification and characterization of Snf1 kinase complexes containing a defined Beta subunit composition. The Journal of Biological Chemistry. 277: 50403-8. PMID 12393914 DOI: 10.1074/Jbc.M207058200  0.503
2001 McCartney RR, Schmidt MC. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. The Journal of Biological Chemistry. 276: 36460-6. PMID 11486005 DOI: 10.1074/jbc.M104418200  0.465
2000 Schmidt MC, McCartney RR. beta-subunits of Snf1 kinase are required for kinase function and substrate definition. The Embo Journal. 19: 4936-43. PMID 10990457 DOI: 10.1093/Emboj/19.18.4936  0.464
1999 Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Wölfl S, Almonte C, Watkins SC. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Molecular and Cellular Biology. 19: 4561-71. PMID 10373505 DOI: 10.1128/Mcb.19.7.4561  0.354
1998 Zhang X, Shen W, Schmidt MC. Amino acid residues in Std1 protein required for induction of SUC2 transcription are also required for suppression of TBPDelta57 growth defect in Saccharomyces cerevisiae. Gene. 215: 131-41. PMID 9666103 DOI: 10.1016/S0378-1119(98)00276-5  0.398
1997 Orzechowski H, Richter C, Funke-Kaiser H, Kröger B, Schmidt M, Menzel S, Bohnemeier H, Paul M. Evidence of alternative promoters directing isoform-specific expression of human endothelin-converting enzyme-1 mRNA in cultured endothelial cells. Journal of Molecular Medicine. 75: 512-521. PMID 9253714 DOI: 10.1007/S001090050136  0.309
1995 Tillman TS, Ganster RW, Jiang R, Carlson M, Schmidt MC. STD1 (MSN3) interacts directly with the TATA-binding protein and modulates transcription of the SUC2 gene of Saccharomyces cerevisiae. Nucleic Acids Research. 23: 3174-80. PMID 7667094 DOI: 10.1093/Nar/23.16.3174  0.394
1993 Ganster RW, Shen W, Schmidt MC. Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein. Molecular and Cellular Biology. 13: 3650-9. PMID 8497275 DOI: 10.1128/Mcb.13.6.3650  0.327
Show low-probability matches.