Year |
Citation |
Score |
2024 |
Patenaude HK, Damjanovic N, Rakos J, Weber DC, Jacobs AI, Bryan SA, Lines AM, Heineman WR, Branch SD, Rusinek CA. A Free-Standing Boron-Doped Diamond Grid Electrode for Fundamental Spectroelectrochemistry. Analytical Chemistry. PMID 39533798 DOI: 10.1021/acs.analchem.4c00906 |
0.43 |
|
2020 |
Lines AM, Hall GB, Asmussen SE, Allred JR, Sinkov SI, Heller FD, Gallagher NB, Lumetta GJ, Bryan SA. Sensor fusion: comprehensive real-time, on-line monitoring for process control via visible, NIR, and Raman spectroscopy. Acs Sensors. PMID 32662261 DOI: 10.1021/Acssensors.0C00659 |
0.371 |
|
2020 |
Chatterjee S, Peterson JM, Casella AJ, Levitskaia TG, Bryan SA. Mechanisms of Plutonium Redox Reactions in Nitric Acid Solutions. Inorganic Chemistry. PMID 32368911 DOI: 10.1021/Acs.Inorgchem.0C00199 |
0.324 |
|
2020 |
Lackey HE, Nelson GL, Lines AM, Bryan SA. Reimagining pH Measurement: Utilizing Raman Spectroscopy for Enhanced Accuracy in Phosphoric Acid Systems. Analytical Chemistry. PMID 32223185 DOI: 10.1021/Acs.Analchem.9B05708 |
0.306 |
|
2020 |
Lines AM, Hall GB, Sinkov S, Levitskaia T, Gallagher N, Lumetta GJ, Bryan SA. Overcoming Oxidation State-Dependent Spectral Interferences: Online Monitoring of U(VI) Reduction to U(IV) via Raman and UV–vis Spectroscopy Industrial & Engineering Chemistry Research. 59: 8894-8901. DOI: 10.1021/Acs.Iecr.9B06706 |
0.308 |
|
2019 |
Nelson GL, Lines AM, Bello JM, Bryan SA. On-line monitoring of solutions within microfluidic chips: simultaneous Raman and UV-vis absorption spectroscopies. Acs Sensors. PMID 31434479 DOI: 10.1021/Acssensors.9B00736 |
0.347 |
|
2019 |
Lines AM, Tse P, Felmy HM, Wilson JM, Shafer J, Denslow KM, Still AN, King C, Bryan SA. Online, Real-Time Analysis of Highly Complex Processing Streams: Quantification of Analytes in Hanford Tank Sample Industrial & Engineering Chemistry Research. 58: 21194-21200. DOI: 10.1021/Acs.Iecr.9B03636 |
0.31 |
|
2018 |
Parruzot B, Ryan JV, Lines AM, Bryan SA, Neeway JJ, Chatterjee S, Lukins CD, Casella AJ. A method for the in-situ measurement of pH and alteration extent for aluminoborosilicate glasses using Raman spectroscopy. Analytical Chemistry. PMID 30198252 DOI: 10.1021/Acs.Analchem.8B00960 |
0.301 |
|
2018 |
Nee K, Bryan SA, Levitskaia TG, Kuo JW, Nilsson M. Combinations of NIR, Raman spectroscopy and physicochemical measurements for improved monitoring of solvent extraction processes using hierarchical multivariate analysis models. Analytica Chimica Acta. 1006: 10-21. PMID 30016260 DOI: 10.1016/J.Aca.2017.12.019 |
0.306 |
|
2018 |
Branch SD, French AD, Lines AM, Soderquist CZ, Rapko BM, Heineman WR, Bryan SA. In situ Spectroscopic Analysis and Quantification of [Tc(CO)3]+ in Hanford Tank Waste. Environmental Science & Technology. PMID 29895141 DOI: 10.1021/Acs.Est.7B05840 |
0.483 |
|
2018 |
Nelson GL, Lines AM, Casella AJ, Bello JM, Bryan SA. Development and testing of a novel micro-Raman probe and application of calibration method for the quantitative analysis of microfluidic nitric acid streams. The Analyst. PMID 29417962 DOI: 10.1039/C7An01761H |
0.308 |
|
2018 |
Lines AM, Warner JD, Heineman WR, Clark SB, Bryan SA. Cover Feature: Spectroelectrochemical Sensor for Spectroscopically Hard-to-detect Metals by in situ
Formation of a Luminescent Complex Using Ru(II) as a Model Compound (Electroanalysis 11/2018) Electroanalysis. 30. DOI: 10.1002/Elan.201881102 |
0.529 |
|
2018 |
Lines AM, Warner JD, Heineman WR, Clark SB, Bryan SA. Spectroelectrochemical Sensor for Spectroscopically Hard-to-detect Metals by in situ
Formation of a Luminescent Complex Using Ru(II) as a Model Compound Electroanalysis. 30: 2644-2652. DOI: 10.1002/Elan.201800427 |
0.531 |
|
2017 |
Branch SD, French AD, Lines AM, Rapko BM, Heineman WR, Bryan SA. In situ quantification of [Re(CO)3]+ by fluorescence spectroscopy in simulated Hanford tank waste. Environmental Science & Technology. PMID 29240997 DOI: 10.1021/Acs.Est.7B04222 |
0.472 |
|
2017 |
Lines AM, Adami SR, Sinkov SI, Lumetta GJ, Bryan SA. Multivariate Analysis for Quantification of Plutonium(IV) in Nitric Acid Based on Absorption Spectra. Analytical Chemistry. 89: 9354-9359. PMID 28727912 DOI: 10.1021/Acs.Analchem.7B02161 |
0.338 |
|
2017 |
Branch SD, Lines AM, Lynch J, Bello JM, Heineman WR, Bryan SA. An Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing. Analytical Chemistry. PMID 28605581 DOI: 10.1021/Acs.Analchem.7B00258 |
0.498 |
|
2017 |
Schroll CA, Chatterjee S, Levitskaia TG, Heineman WR, Bryan SA. Electrochemistry of Europium(III) Chloride in 3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl, and 3 LiCl – 2 CsCl Eutectics at Various Temperatures Journal of the Electrochemical Society. 164: H5345-H5352. DOI: 10.1149/2.0521708Jes |
0.441 |
|
2016 |
Schroll CA, Lines AM, Heineman WR, Bryan SA. Absorption spectroscopy for the quantitative prediction of lanthanide concentrations in the 3LiCl–2CsCl eutectic at 723 K Analytical Methods. 8: 7731-7738. DOI: 10.1039/C6Ay01520D |
0.465 |
|
2016 |
Casella A, Lines A, Nelson G, Bello J, Bryan S. MicroRaman Measurements for Nuclear Fuel Reprocessing Applications Procedia Chemistry. 21: 466-472. DOI: 10.1016/J.Proche.2016.10.065 |
0.308 |
|
2016 |
Schroll CA, Chatterjee S, Levitskaia T, Heineman WR, Bryan SA. Spectroelectrochemistry of EuCl3 in Four Molten Salt Eutectics; 3LiCl-NaCl, 3LiCl-2KCl, LiCl-RbCl, and 3LiCl-2CsCl; at 873K Electroanalysis. DOI: 10.1002/Elan.201600048 |
0.474 |
|
2016 |
Lines AM, Wang Z, Clark SB, Bryan SA. Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes Electroanalysis. DOI: 10.1002/Elan.201600034 |
0.353 |
|
2015 |
Chatterjee S, Norton AE, Edwards MK, Peterson JM, Taylor SD, Bryan SA, Andersen A, Govind N, Albrecht-Schmitt TE, Connick WB, Levitskaia TG. Highly Selective Colorimetric and Luminescence Response of a Square-Planar Platinum(II) Terpyridyl Complex to Aqueous TcO4(.) Inorganic Chemistry. PMID 26447785 DOI: 10.1021/Acs.Inorgchem.5B01664 |
0.37 |
|
2015 |
Casella AJ, Ahlers LR, Campbell EL, Levitskaia TG, Peterson JM, Smith FN, Bryan SA. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes. Analytical Chemistry. 87: 5139-47. PMID 25873074 DOI: 10.1021/Ac504578T |
0.306 |
|
2014 |
Morris LK, Seliskar CJ, Bryan SA, Heineman WR. Spectroelectrochemical sensors: New polymer films for improved sensitivity Proceedings of Spie - the International Society For Optical Engineering. 9253. DOI: 10.1117/12.2066892 |
0.393 |
|
2013 |
Chatterjee S, Del Negro AS, Smith FN, Wang Z, Hightower SE, Sullivan BP, Heineman WR, Seliskar CJ, Bryan SA. Photophysics and luminescence spectroelectrochemistry of [Tc(dmpe)3](+/2+) (dmpe = 1,2-bis(dimethylphosphino)ethane). The Journal of Physical Chemistry. A. 117: 12749-58. PMID 24256024 DOI: 10.1021/Jp406365C |
0.511 |
|
2013 |
Schroll CA, Chatterjee S, Levitskaia TG, Heineman WR, Bryan SA. Electrochemistry and Spectroelectrochemistry of europium(III) chloride in 3LiCl-2KCl from 643 to 1123 K. Analytical Chemistry. 85: 9924-31. PMID 24016214 DOI: 10.1021/Ac402518P |
0.51 |
|
2013 |
Casella AJ, Levitskaia TG, Peterson JM, Bryan SA. Water O-H stretching Raman signature for strong acid monitoring via multivariate analysis. Analytical Chemistry. 85: 4120-8. PMID 23472939 DOI: 10.1021/Ac4001628 |
0.338 |
|
2013 |
Chatterjee S, Bryan SA, Seliskar CJ, Heineman WR. Three-component spectroelectrochemical sensor module for the detection of pertechnetate (TcO4-) Reviews in Analytical Chemistry. 32: 209-224. DOI: 10.1515/Revac-2013-0001 |
0.53 |
|
2012 |
Heineman WR, Seliskar CJ, Morris LK, Bryan SA. Spectroelectrochemistry as a strategy for improving selectivity of sensors for security and defense applications Proceedings of Spie - the International Society For Optical Engineering. 8545. DOI: 10.1117/12.965308 |
0.399 |
|
2012 |
Schwantes J, Bryan S, Orton C, Levitskaia TG, Pratt S, Fraga C, Coble J. Advanced Process Monitoring Safeguards Technologies at Pacific Northwest National Laboratory Procedia Chemistry. 7: 716-724. DOI: 10.1016/J.Proche.2012.10.109 |
0.306 |
|
2012 |
Abu EA, Bryan SA, Seliskar CJ, Heineman WR. Assessing a Spectroelectrochemical Sensor's Performance for Detecting [Ru(bpy) 3] 2+ in Natural and Treated Water Electroanalysis. 24: 1517-1523. DOI: 10.1002/Elan.201200143 |
0.537 |
|
2012 |
Schroll CA, Chatterjee S, Heineman WR, Bryan SA. Thin-Layer Spectroelectrochemistry on an Aqueous Microdrop Electroanalysis. 24: 1065-1070. DOI: 10.1002/Elan.201100711 |
0.488 |
|
2011 |
Chatterjee S, Del Negro AS, Wang Z, Edwards MK, Skomurski FN, Hightower SE, Krause JA, Twamley B, Sullivan BP, Reber C, Heineman WR, Seliskar CJ, Bryan SA. Electronic and molecular structures of trans-dioxotechnetium(V) polypyridyl complexes in the solid state. Inorganic Chemistry. 50: 5815-23. PMID 21608981 DOI: 10.1021/Ic200747V |
0.501 |
|
2011 |
Schroll CA, Chatterjee S, Heineman WR, Bryan SA. Semi-infinite linear diffusion spectroelectrochemistry on an aqueous micro-drop. Analytical Chemistry. 83: 4214-9. PMID 21495728 DOI: 10.1021/Ac200551N |
0.49 |
|
2011 |
Chatterjee S, Del Negro AS, Edwards MK, Bryan SA, Kaval N, Pantelic N, Morris LK, Heineman WR, Seliskar CJ. Luminescence-based spectroelectrochemical sensor for [Tc(dmpe)3]2+/+ (dmpe = 1,2-bis(dimethylphosphino)ethane) within a charge-selective polymer film. Analytical Chemistry. 83: 1766-72. PMID 21294535 DOI: 10.1021/Ac1030368 |
0.539 |
|
2011 |
Bryan SA, Levitskaia TG, Johnsen AM, Orton CR, Peterson JM. Spectroscopic monitoring of spent nuclear fuel reprocessing streams: An evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy Radiochimica Acta. 99: 563-571. DOI: 10.1524/Ract.2011.1865 |
0.344 |
|
2009 |
Heineman WR, Seliskar CJ, Pinyayev TS, Wilson RA, Morris LK, Del Negro AS, Bryan SA. Spectroelectrochemical sensor: Development and applications Ecs Transactions. 19: 129-134. DOI: 10.1149/1.3118545 |
0.409 |
|
2009 |
Morris LK, Seliskar CJ, Heineman WR, del Negro AS, Bryan SA. Absorbance-based spectroelectrochemical sensor for [Re(dmpe)3]+ (dmpe=dimethylphosphinoethane) Electroanalysis. 21: 2091-2098. DOI: 10.1002/Elan.200904651 |
0.541 |
|
2007 |
Levitskaia TG, Sinkov SI, Bryan SA. In situ perchlorate determination on Purolite A850 ion exchange resin via Raman spectroscopy Vibrational Spectroscopy. 44: 316-323. DOI: 10.1016/J.Vibspec.2007.02.002 |
0.304 |
|
2006 |
Del Negro AS, Seliskar CJ, Heineman WR, Hightower SE, Bryan SA, Sullivan BP. Highly oxidizing excited states of Re and Tc complexes. Journal of the American Chemical Society. 128: 16494-5. PMID 17177386 DOI: 10.1021/Ja067114G |
0.508 |
|
2005 |
Del Negro AS, Wang Z, Seliskar CJ, Heineman WR, Sullivan BP, Hightower SE, Hubler TL, Bryan SA. Luminescence from the trans-dioxotechnetium(V) chromophore. Journal of the American Chemical Society. 127: 14978-9. PMID 16248608 DOI: 10.1021/Ja054906M |
0.486 |
|
2004 |
Zudans I, Paddock JR, Kuramitz H, Maghasi AT, Wansapura CM, Conklin SD, Kaval N, Shtoyko T, Monk DJ, Bryan SA, Hubler TL, Richardson JN, Seliskar CJ, Heineman WR. Electrochemical and optical evaluation of noble metal- and carbon-ITO hybrid optically transparent electrodes Journal of Electroanalytical Chemistry. 565: 311-320. DOI: 10.1016/J.Jelechem.2003.10.025 |
0.48 |
|
2003 |
Stegemiller ML, Heineman WR, Seliskar CJ, Ridgway TH, Bryan SA, Hubler T, Sell RL. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 11. Design and evaluation of a small portable sensor for the determination of ferrocyanide in Hanford waste samples. Environmental Science & Technology. 37: 123-30. PMID 12542300 DOI: 10.1021/Es020601L |
0.527 |
|
2002 |
Maizels M, Seliskar CJ, Heineman WR, Bryan SA. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 10. Sensing of ferrocyanide in hanford tank waste simulant solution Electroanalysis. 14: 1345-1352. DOI: 10.1002/1521-4109(200211)14:19/20<1345::Aid-Elan1345>3.0.Co;2-E |
0.515 |
|
2001 |
Maizels M, Stegemiller M, Ross S, Slaterbeck A, Shi Y, Ridgway TH, Heineman WR, Seliskar CJ, Bryan SA. Novel Spectroelectrochemical Sensor for Ferrocyanide in Hanford Waste Simulant Acs Symposium Series. 778: 364-378. |
0.409 |
|
1990 |
Bryan SA, Willis RR, Moyer BA. Hydration of 18-crown-6 in carbon tetrachloride. Infrared spectral evidence for an equilibrium between monodentate and bidentate forms of bound water in the 1:1 crown-water adduct The Journal of Physical Chemistry. 94: 5230-5233. DOI: 10.1021/J100376A011 |
0.511 |
|
1988 |
BRYAN SA, DICKSON MK, ROUNDHILL DM. ChemInform Abstract: Synthesis, Reactivity, Kinetics, and Photochemical Studies on Tetrakis(μ-pyrophosphito)diplatinate(II) and Dihalotetrakis(μ-pyrophosphito)diplatinate(III) Complexes. Comparison of the Substitution Mechanisms of the Diplatinum(III) Com Cheminform. 19. DOI: 10.1002/chin.198811306 |
0.513 |
|
1987 |
Bryan SA, McDowell WJ, Moyer BA, Baes CF, Case GN. SPECTRAL STUDIES AND EQUILIBRIUM ANALYSIS OF THE DIDODECYLNAPHTHALENE SULFONIC ACID, DICYCL0HEXAN0-18-CR0WN-6, Sr2+EXTRACTION SYSTEM Solvent Extraction and Ion Exchange. 5: 717-738. DOI: 10.1080/07366298708918590 |
0.542 |
|
1987 |
Bryan SA, Dickson MK, Roundhill DM. Synthesis, reactivity, kinetics, and photochemical studies on tetrakis(.mu.-pyrophosphito)diplatinate(II) and dihalotetrakis(.mu.-pyrophosphito)diplatinate(III) complexes. Comparison of the substitution mechanisms of the diplatinum(III) complexes with those of monomeric platinum(II) and platinum(IV) compounds Inorganic Chemistry. 26: 3878-3886. DOI: 10.1021/Ic00270A013 |
0.335 |
|
1987 |
Bryan SA, Dickson MK, Roundhill DM. Synthesis, reactivity, kinetics, and photochemical studies on tetrakis(μ-pyrophosphito)diplatinate(II) and dihalotetrakis(μ-pyrophosphito)diplatinate(III) complexes. Comparison of the substitution mechanisms of the diplatinum(III) complexes with those of monomeric platinum(II) and platinum(IV) compounds Inorganic Chemistry. 26: 3878-3886. |
0.516 |
|
1986 |
Moyer BA, McDowell WJ, Ontko RJ, Bryan SA, Case GN. Complexation Of Strontium In The Synergistic Extraction System Dicyclohexano-18-Crown-6, Versatic Acid, Carbon Tetrachloride Solvent Extraction and Ion Exchange. 4: 83-93. DOI: 10.1080/07366298608917854 |
0.545 |
|
1986 |
Bryan SA, Schmehl RH, Roundhill DM. Electrochemical oxidation of the tetrakis(μ-pyrophosphito-P,P′)cliplatinum(II) complex Pt2(μ-P2O5H2)4 4- both in the presence and the absence of halide ions, and reduction of the axially substituted halodiplatinum(III) complexes Pt2(μ-P2O5H2) ... Journal of the American Chemical Society. 108: 5408-5412. |
0.526 |
|
1985 |
Alexander KA, Bryan SA, Fronczek FR, Fultz WC, Rheingold AL, Roundhill DM, Stein P, Watkins SF. Crystal and molecular structures of dihalotetrakis(pyrophosphito)diplatinum(III) complexes. Integrative use of structural and vibrational data to assess intermetallic bonding and the trans influence of the Pt(III)-Pt(III) bond Inorganic Chemistry. 24: 2803-2808. |
0.486 |
|
1984 |
Bryan SA, Dickson MK, Roundhill DM. Thermal, photochemical and electrochemical reactions involving binuclear platinum(II) and -(III) pyrophosphite complexes. Reaction chemistry of tetrakis(diphosphonato)diplatinate(4-) ion (Pt2(P2O5H2)44-) and the halide complexes dihalotetrakis(diphosphonato)diplatinate(4-) ion (Pt2(P2O5H2)4X24-) Journal of the American Chemical Society. 106: 1882-1883. DOI: 10.1021/Ja00318A079 |
0.52 |
|
1984 |
BRYAN SA, DICKSON MK, ROUNDHILL DM. ChemInform Abstract: THERMAL, PHOTOCHEMICAL AND ELECTROCHEMICAL REACTIONS INVOLVING BINUCLEAR PLATINUM(II) AND -(III) PYROPHOSPHITE COMPLEXES. REACTION CHEMISTRY OF TETRAKIS(DIPHOSPHONATO)DIPLATINATE(4-) ION (PT2(P2O5H2)44-) AND THE HALIDE COMPLEXES DIHAL Chemischer Informationsdienst. 15. DOI: 10.1002/chin.198425030 |
0.516 |
|
Show low-probability matches. |