Year |
Citation |
Score |
2024 |
Bejko M, Al Yaman Y, Keyes ACJ, Bagur A, Rosa P, Gayot M, Weill F, Mornet S, Sandre O. Structure-Function Relationship of Iron Oxide Nanoflowers: Optimal Sizes for Magnetic Hyperthermia Depending on Alternating Magnetic Field Conditions. Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry. e202400023. PMID 39046870 DOI: 10.1002/cphc.202400023 |
0.561 |
|
2022 |
Germande O, Beaufils F, Daffe G, Gonzalez P, Mornet S, Bejko M, Errera MH, Lacomme S, Gontier E, Guibert C, Baudrimont I, Baudrimont M. Cellular and molecular mechanisms of NiONPs toxicity on eel hepatocytes HEPA-E1: An illustration of the impact of Ni release from mining activity in New Caledonia. Chemosphere. 303: 135158. PMID 35640691 DOI: 10.1016/j.chemosphere.2022.135158 |
0.612 |
|
2022 |
Germande O, Baudrimont M, Beaufils F, Freund-Michel V, Ducret T, Quignard JF, Errera MH, Lacomme S, Gontier E, Mornet S, Bejko M, Muller B, Marthan R, Guibert C, Deweirdt J, et al. NiONPs-induced alteration in calcium signaling and mitochondrial function in pulmonary artery endothelial cells involves oxidative stress and TRPV4 channels disruption. Nanotoxicology. 1-23. PMID 35090355 DOI: 10.1080/17435390.2022.2030821 |
0.611 |
|
2020 |
Deweirdt J, Quignard JF, Lacomme S, Gontier E, Mornet S, Savineau JP, Marthan R, Guibert C, Baudrimont I. In vitro study of carbon black nanoparticles on human pulmonary artery endothelial cells: effects on calcium signaling and mitochondrial alterations. Archives of Toxicology. 94: 2331-2348. PMID 32394085 DOI: 10.1007/s00204-020-02764-9 |
0.419 |
|
2017 |
Prévot G, Mornet S, Lorenzato C, Kauss T, Adumeau L, Gaubert A, Baillet J, Barthélémy P, Clofent-Sanchez G, Crauste-Manciet S. Data on iron oxide core oil-in-water nanoemulsions for atherosclerosis imaging. Data in Brief. 15: 876-881. PMID 29159224 DOI: 10.1016/J.Dib.2017.10.059 |
0.326 |
|
2017 |
Sandre O, Genevois C, Garaio E, Adumeau L, Mornet S, Couillaud F. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia. Genes. 8. PMID 28208731 DOI: 10.3390/Genes8020061 |
0.649 |
|
2015 |
Garaio E, Sandre O, Collantes JM, Garcia JA, Mornet S, Plazaola F. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry). Nanotechnology. 26: 015704. PMID 25490677 DOI: 10.1088/0957-4484/26/1/015704 |
0.624 |
|
2014 |
Garaio E, Collantes J, Garcia J, Plazaola F, Mornet S, Couillaud F, Sandre O. A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia Journal of Magnetism and Magnetic Materials. 368: 432-437. DOI: 10.1016/J.Jmmm.2013.11.021 |
0.618 |
|
2013 |
Aissou K, Alnasser T, Pecastaings G, Goglio G, Toulemonde O, Mornet S, Fleury G, Hadziioannou G. Hierarchical assembly of magnetic L10-ordered FePt nanoparticles in block copolymer thin films Journal of Materials Chemistry C. 1: 1317-1321. DOI: 10.1039/C2Tc00490A |
0.343 |
|
2011 |
Epherre R, Duguet E, Mornet S, Pollert E, Louguet S, Lecommandoux S, Schatz C, Goglio G. Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route Journal of Materials Chemistry. 21: 4393. DOI: 10.1039/C0Jm03963B |
0.323 |
|
2009 |
Kaman O, Pollert E, Veverka P, Veverka M, Hadová E, Knízek K, Marysko M, Kaspar P, Klementová M, Grünwaldová V, Vasseur S, Epherre R, Mornet S, Goglio G, Duguet E. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology. 20: 275610. PMID 19531865 DOI: 10.1088/0957-4484/20/27/275610 |
0.333 |
|
2006 |
Duguet E, Vasseur S, Mornet S, Devoisselle JM. Magnetic nanoparticles and their applications in medicine. Nanomedicine (London, England). 1: 157-68. PMID 17716105 DOI: 10.2217/17435889.1.2.157 |
0.354 |
|
2006 |
Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadová E, Knížek K, Maryško M, Veverka P, Pollert E. Erratum to “Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia” Journal of Magnetism and Magnetic Materials. 307: 330. DOI: 10.1016/J.JMMM.2006.06.034 |
0.361 |
|
2006 |
Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadová E, Knížek K, Maryško M, Veverka P, Pollert E. Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia Journal of Magnetism and Magnetic Materials. 302: 315-320. DOI: 10.1016/J.JMMM.2005.09.026 |
0.363 |
|
2006 |
Duguet E, Vasseur S, Mornet S, Goglio G, Demourgues A, Portier J, Grasset F, Veverka P, Pollert E. Towards a versatile platform based on magnetic nanoparticles for in vivo applications Bulletin of Materials Science. 29: 581-586. DOI: 10.1007/S12034-006-0007-0 |
0.336 |
|
2002 |
Grasset F, Labhsetwar N, Li D, Park DC, Saito N, Haneda H, Cador O, Roisnel T, Mornet S, Duguet E, Portier J, Etourneau J. Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite−Silica Core−Shell Nanoparticles Langmuir. 18: 8209-8216. DOI: 10.1021/LA020322B |
0.301 |
|
Show low-probability matches. |