Year |
Citation |
Score |
2021 |
Dias VS, Cáceres C, Parker AG, Pereira R, Demirbas-Uzel G, Abd-Alla AMM, Teets NM, Schetelig MF, Handler AM, Hahn DA. Mitochondrial superoxide dismutase overexpression and low oxygen conditioning hormesis improve the performance of irradiated sterile males. Scientific Reports. 11: 20182. PMID 34642368 DOI: 10.1038/s41598-021-99594-1 |
0.49 |
|
2021 |
Spacht DE, Gantz JD, Devlin JJ, McCabe EA, Lee RE, Denlinger DL, Teets NM. Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect. Oecologia. PMID 34596750 DOI: 10.1007/s00442-021-05035-1 |
0.504 |
|
2020 |
Potts LJ, Gantz JD, Kawarasaki Y, Philip BN, Gonthier DJ, Law AD, Moe L, Unrine JM, McCulley RL, Lee RE, Denlinger DL, Teets NM. Environmental factors influencing fine-scale distribution of Antarctica's only endemic insect. Oecologia. PMID 32725300 DOI: 10.1007/S00442-020-04714-9 |
0.454 |
|
2020 |
Garcia MJ, Littler AS, Sriram A, Teets NM. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution; International Journal of Organic Evolution. PMID 32463118 DOI: 10.1111/evo.14025 |
0.375 |
|
2020 |
Teets NM, Gantz JD, Kawarasaki Y. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. The Journal of Experimental Biology. 223. PMID 32051174 DOI: 10.1242/jeb.203448 |
0.409 |
|
2019 |
Teets NM, Dalrymple EG, Hillis MH, Gantz JD, Spacht DE, Lee RE, Denlinger DL. Changes in Energy Reserves and Gene Expression Elicited by Freezing and Supercooling in the Antarctic Midge, . Insects. 11. PMID 31878219 DOI: 10.3390/Insects11010018 |
0.605 |
|
2019 |
Nadeau EAW, Teets NM. Evidence for a rapid cold hardening response in cultured S2 cells. The Journal of Experimental Biology. PMID 31862846 DOI: 10.1242/jeb.212613 |
0.315 |
|
2019 |
Teets NM, Kawarasaki Y, Potts LJ, Philip BN, Gantz JD, Denlinger DL, Lee RE. Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect. The Journal of Experimental Biology. PMID 31345935 DOI: 10.1242/Jeb.206011 |
0.565 |
|
2019 |
Teets NM, Dias VS, Pierce BK, Schetelig MF, Handler AM, Hahn DA. Overexpression of an antioxidant enzyme improves male mating performance after stress in a lek-mating fruit fly. Proceedings. Biological Sciences. 286: 20190531. PMID 31185862 DOI: 10.1098/Rspb.2019.0531 |
0.511 |
|
2019 |
Garcia MJ, Teets NM. Cold stress results in sustained locomotor and behavioral deficits in Drosophila melanogaster. Journal of Experimental Zoology. Part a, Ecological and Integrative Physiology. PMID 30609298 DOI: 10.1002/jez.2253 |
0.318 |
|
2019 |
Kawarasaki Y, Teets NM, Philip BN, Potts LJ, Gantz JD, Denlinger DL, Lee RE. Characterization of drought-induced rapid cold-hardening in the Antarctic midge, Belgica antarctica Polar Biology. 42: 1147-1156. DOI: 10.1007/S00300-019-02503-6 |
0.562 |
|
2018 |
Spacht DE, Teets NM, Denlinger DL. Two isoforms of Pepck in Sarcophaga bullata and their distinct expression profiles through development, diapause, and in response to stresses of cold and starvation. Journal of Insect Physiology. 111: 41-46. PMID 30392850 DOI: 10.1016/J.Jinsphys.2018.10.008 |
0.554 |
|
2018 |
Halbritter DA, Teets NM, Williams CM, Daniels JC. Differences in winter cold hardiness reflect the geographic range disjunction of Neophasia menapia and Neophasia terlooii (Lepidoptera: Pieridae). Journal of Insect Physiology. PMID 29551570 DOI: 10.1016/J.Jinsphys.2018.03.005 |
0.508 |
|
2018 |
Teets NM, Hahn DA. Genetic variation in the shape of cold survival curves in a single fly population suggests potential for selection from climate variability. Journal of Evolutionary Biology. PMID 29345010 DOI: 10.1111/Jeb.13244 |
0.572 |
|
2016 |
Teets NM, Denlinger DL. Quantitative phosphoproteomics reveals signaling mechanisms associated with rapid cold hardening in a chill-tolerant fly. Journal of Proteome Research. PMID 27362561 DOI: 10.1021/Acs.Jproteome.6B00427 |
0.519 |
|
2016 |
Dean CAE, Teets NM, Koštál V, Šimek P, Denlinger DL. Enhanced stress responses and metabolic adjustments linked to diapause and onset of migration in the large milkweed bug Oncopeltus fasciatus Physiological Entomology. 41: 152-161. DOI: 10.1111/Phen.12140 |
0.56 |
|
2015 |
Terhzaz S, Teets NM, Cabrero P, Henderson L, Ritchie MG, Nachman RJ, Dow JA, Denlinger DL, Davies SA. Insect capa neuropeptides impact desiccation and cold tolerance. Proceedings of the National Academy of Sciences of the United States of America. 112: 2882-7. PMID 25730885 DOI: 10.1073/Pnas.1501518112 |
0.53 |
|
2014 |
Kelley JL, Peyton JT, Fiston-Lavier AS, Teets NM, Yee MC, Johnston JS, Bustamante CD, Lee RE, Denlinger DL. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nature Communications. 5: 4611. PMID 25118180 DOI: 10.1038/Ncomms5611 |
0.504 |
|
2014 |
Teets NM, Denlinger DL. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods. The Journal of Experimental Biology. 217: 84-93. PMID 24353207 DOI: 10.1242/Jeb.089490 |
0.583 |
|
2014 |
Kawarasaki Y, Teets NM, Denlinger DL, Lee RE. Alternative overwintering strategies in an Antarctic midge: freezing vs. cryoprotective dehydration Functional Ecology. 28: 933-943. DOI: 10.1111/1365-2435.12229 |
0.536 |
|
2014 |
Kawarasaki Y, Teets NM, Denlinger DL, Lee RE. Wet hibernacula promote inoculative freezing and limit the potential for cryoprotective dehydration in the Antarctic midge, Belgica antarctica Polar Biology. 37: 753-761. DOI: 10.1007/S00300-014-1475-0 |
0.465 |
|
2013 |
Kawarasaki Y, Teets NM, Denlinger DL, Lee RE. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. The Journal of Experimental Biology. 216: 3937-45. PMID 23868837 DOI: 10.1242/Jeb.088278 |
0.577 |
|
2013 |
Teets NM, Yi SX, Lee RE, Denlinger DL. Calcium signaling mediates cold sensing in insect tissues. Proceedings of the National Academy of Sciences of the United States of America. 110: 9154-9. PMID 23671084 DOI: 10.1073/Pnas.1306705110 |
0.472 |
|
2013 |
Teets NM, Denlinger DL. Autophagy in Antarctica: combating dehydration stress in the world's southernmost insect. Autophagy. 9: 629-31. PMID 23380735 DOI: 10.4161/Auto.23643 |
0.557 |
|
2013 |
Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology. 183: 189-201. PMID 22972362 DOI: 10.1007/S00360-012-0707-2 |
0.578 |
|
2013 |
TEETS NM, DENLINGER DL. Physiological mechanisms of seasonal and rapid cold-hardening in insects Physiological Entomology. 38: 105-116. DOI: 10.1111/Phen.12019 |
0.557 |
|
2012 |
Teets NM, Peyton JT, Colinet H, Renault D, Kelley JL, Kawarasaki Y, Lee RE, Denlinger DL. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Proceedings of the National Academy of Sciences of the United States of America. 109: 20744-9. PMID 23197828 DOI: 10.1073/Pnas.1218661109 |
0.567 |
|
2012 |
Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, Denlinger DL. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiological Genomics. 44: 764-77. PMID 22735925 DOI: 10.1152/Physiolgenomics.00042.2012 |
0.706 |
|
2012 |
Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Energetic consequences of repeated and prolonged dehydration in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology. 58: 498-505. PMID 22133311 DOI: 10.1016/J.Jinsphys.2011.11.011 |
0.508 |
|
2011 |
Goto SG, Philip BN, Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica. Journal of Insect Physiology. 57: 1106-14. PMID 21497603 DOI: 10.1016/J.Jinsphys.2011.03.023 |
0.504 |
|
2011 |
Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae. The Journal of Experimental Biology. 214: 806-14. PMID 21307067 DOI: 10.1242/Jeb.051912 |
0.541 |
|
2011 |
Michaud MR, Teets NM, Peyton JT, Blobner BM, Denlinger DL. Heat shock response to hypoxia and its attenuation during recovery in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology. 57: 203-10. PMID 21075112 DOI: 10.1016/J.Jinsphys.2010.11.007 |
0.509 |
|
2009 |
Benoit JB, Lopez-Martinez G, Teets NM, Phillips SA, Denlinger DL. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins. Medical and Veterinary Entomology. 23: 418-25. PMID 19941608 DOI: 10.1111/J.1365-2915.2009.00832.X |
0.543 |
|
2008 |
Teets NM, Elnitsky MA, Benoit JB, Lopez-Martinez G, Denlinger DL, Lee RE. Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: cellular cold-sensing and a role for calcium. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 294: R1938-46. PMID 18417647 DOI: 10.1152/Ajpregu.00459.2007 |
0.51 |
|
Show low-probability matches. |